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ABSTRACT 
 
 

The performance of coherent and noncoherent RAKE receivers over a fading 

channel in the presence of pulse-noise interference and additive white Gaussian noise is 

analyzed. Coherent RAKE receivers require a pilot tone for coherent demodulation. When 

a first order phase-lock-loop is used to recover a pilot tone in the presence of  additive 

white Gaussian noise, phase distortions at the phase-lock-loop output result.  These phase 

distortions produce an irreducible phase noise error floor for soft decision Viterbi decod-

ing. Both coherent and noncoherent RAKE receivers optimized for additive white Gaus-

sian noise perform poorly when pulse-noise interference is present. When soft decision 

convolutional coding is considered, the performance degrades as the duty cycle of the 

pulse-noise interference signal decreases. The reverse is true for hard decision Viterbi 

decoding, since fewer bits experience interference and bit errors with high noise variance 

cannot dominate the decision statistics. The soft decision RAKE receiver optimized for 

pulse-noise interference and additive white Gaussian noise performed the best for both 

the coherent and noncoherent RAKE receivers. This receiver scales the received signal by 

the inverse of the variance on a bit-by-bit basis to minimize the effect of pulse-noise in-

terference. The efficacy of this technique is demonstrated by analytical results, which re-

veal that this receiver reduces the probability of bit error down to the irreducible phase 

noise error floor when pulse-noise interference is present. This demonstrates how impor-

tant it is to design the receiver for the intended operational environment. 
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EXECUTIVE SUMMARY 
 
 

The performance of coherent and noncoherent RAKE receivers for a signal trans-

mitted over a fading channel in the presence of pulse-noise interference and additive 

white Gaussian noise is analyzed. Unlike commercial systems, which operate under strict 

FCC regulations, military communication systems are often required to operate with high 

levels of noise and interference in addition to frequency-selective fading. Reliable com-

munication over a frequency-selective fading channel can be achieved by either using a 

RAKE receiver or orthogonal frequency-division multiplexing (OFDM). This dissertation 

analyzes the performance of a RAKE receiver with convolutional coding with both hard 

and soft decision decoding. Coherent RAKE receivers require a pilot tone for demodula-

tion.  The use of a first order phase-lock-loop to recover a pilot tone with additive white 

Gaussian noise causes phase distortions at the phase-lock-loop output, which produce an 

irreducible phase noise error floor for soft decision Viterbi decoding. These phase distor-

tions are negligible when the pilot tone signal-to-noise ratio is 20 dB or greater. If the pi-

lot tone is received with a lower signal-to-noise ratio, reliable communication may not be 

possible. Analytical results for soft decision Viterbi decoding with a 10-dB pilot tone sig-

nal-to-noise ratio predicts a catastrophic 50 percent error rate. This demonstrates how 

critical it is for a coherent communication system to have a good phase reference. 

Commercial RAKE receivers, such as the ones used in IS95 cellular phones, are 

optimized for additive white Gaussian noise. This dissertation demonstrates that both co-

herent and noncoherent RAKE receivers optimized for additive white Gaussian noise per-

form poorly when pulse-noise interference is present. When soft decision Viterbi decod-

ing is considered, the performance degrades as the duty cycle of the pulse-noise interfer-

ence signal decreases. The reverse is true for hard decision Viterbi decoding, since fewer 

bits experience interference and bit errors with high noise variance cannot dominate the 

decision statistics. Soft decision receivers provide a decision if the received bit is a logi-

cal “1” or a logical “0” as well as an estimate of the of the receiver confidence in the bit 

decision. If the pulse-noise interference causes a bit error and the soft decision receiver 

gives the bit decision a high confidence estimate, then soft decision Viterbi decoding will 

produce significant errors. Hard decision Viterbi decoding, on the other hand, provides 



xiv 

some immunity to both pulse-noise interference and phase noise. When the pulse-noise 

interference had a one percent duty cycle, the coherent RAKE receiver with hard decision 

Viterbi decoding produced an error rate of approximately 1010−  or lower when the pilot 

tone signal-to-noise ratio was 20 dB. If the pilot tone is received with only a 10-dB sig-

nal-to-noise ratio, then a coherent RAKE receiver with hard decision Viterbi decoding 

could still provide reliable communication. An error rate of 610−  can be obtained when 

the ratio of the received signal power-to-pulse-noise interference power is 30 dB or 

greater. 

Noncoherent RAKE receivers do not track the phase of the received signal, hence 

they are not affected by phase noise. Using soft decision Viterbi decoding, the noncoher-

ent RAKE receiver can perform below the coherent RAKE receiver phase noise error floor 

when the ratio of the received signal power-to-pulse-noise interference power is large. 

However, the coherent RAKE receiver for small values of received signal power-to-pulse-

noise interference power performs significantly better than the noncoherent RAKE re-

ceiver when the effects of phase noise are negligible. This is especially true when hard 

decision Viterbi decoding is considered. For a pulse-noise duty cycle of one percent and 

approximately the same received signal power and pulse-noise interference power, the 

probability of bit error for a noncoherent RAKE receiver with hard decision Viterbi de-

coding was approximately 610− . This is four orders of magnitude worse than the coherent 

RAKE receiver with hard decision Viterbi decoding. 

A RAKE receiver optimized for pulse-noise interference and additive white Gaus-

sian noise performed the best for both the coherent and noncoherent cases. This receiver 

scales the received signal by the inverse of the variance on a bit-by bit basis to minimize 

the effect of pulse-noise interference. The efficacy of this technique is demonstrated by 

analytical results, which reveal that this receiver reduces the probability of bit error down 

to the irreducible phase noise error floor when pulse-noise interference is present. This 

demonstrates how important it is to design the receiver for the intended operational envi-

ronment. 
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I. INTRODUCTION  
 
Wireless communications over multipath fading channels are increasingly impor-

tant for modern digital communications systems. This is especially true for military 

communication systems, which may also have to operate in high levels of noise and inter-

ference. There are many examples in modern digital communication systems of wireless 

transmission over fading channels, such as cellular telephones, wireless local area net-

works, and the physical layer of a mobile ad hoc network, such as a network between two 

ships. Furthermore, with the demand for even higher data bit rates to support ever more 

sophisticated data applications, the fading channel is more likely to be frequency-

selective. Consequently, modern digital communication systems have to be designed to 

operate over frequency-selective channels in order to avoid significant degradation in 

performance.  

One technique that can be used to eliminate the degradation that results from a 

frequency-selective channel is orthogonal frequency-division multiplexing (OFDM) 

where the data bits are transmitted on a number of orthogonal carrier frequencies. OFDM 

is a special case of multicarrier, as opposed to single carrier, modulation where the use of 

orthogonal carrier frequencies minimizes overall signal bandwidth. If there are N or-

thogonal carrier frequencies, then one out of every N data symbols is transmitted on the 

same carrier frequency, and the symbol rate for an individual carrier is reduced by a fac-

tor of N. As a result, the bandwidth required for each carrier is reduced by a factor of N as 

compared with the bandwidth of the signal when only a single carrier frequency is used. 

By choosing N large enough, the channel for each carrier can be made frequency-

nonselective, or flat, even though the channel is frequency-selective when only a single 

carrier is used. OFDM essentially works by converting a single signal into multiple sig-

nals, where each of the multiple signals is frequency-nonselective over the same channel 

for which the original single carrier signal is frequency-selective. 

Another technique for minimizing the performance degradation caused by fre-

quency-selective channels involves the modification of the receiver rather than the trans-

mitter. One type of receiver designed to demodulate signals that have been transmitted 

over a frequency-selective channel is the RAKE receiver. In this dissertation the perform-
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ance of a RAKE receiver when the signal is transmitted over a frequency-selective chan-

nel is analyzed. Since military systems face even more complicated issues such as inter-

ference, the effect of pulse-noise interference as well as additive white Gaussian noise 

(AWGN) is also analyzed. For coherently detected signals, the effect of phase noise on 

the system performance is analyzed. A block diagram of the assumed transmitter is 

shown in Figures 1.1. 

 

 
 
 
 

Figure 1.1 Transmitter Diagram. 
 

As can be seen in Figure 1.1, the data is assumed to be convolutionally encoded, inter-

leaved and modulated as either a Binary Phase Shift Keying (BPSK) waveform or fre-

quency shift keying (FSK) waveform. The signal is assumed to be transmitted over a 

slow, frequency-selective fading channel with both pulse-noise interference and AWGN. 

Without loss of generality, in order to evaluate the effect of channel fading and pulse-

noise interference on the data signal alone as well as on both the data signal and the pilot 

tone, the pilot tone is assumed to be transmitted on a separate, independent frequency 

from the data waveform carrier frequency. 

A block diagram of the receiver is shown in Figure 1.2. 
 

 
 
 
 

Figure 1.2 Receiver Diagram. 
 
A RAKE receiver is used to minimize the effect of the frequency-selective fading chan-

nel, and the maximum-likelihood RAKE receiver for AWGN and pulse-noise interference 

is analyzed and compared with a RAKE receiver designed for AWGN only. De-

interleaving the signal randomizes the errors prior to decoding. Both hard decision and 

soft decision Viterbi decoding are analyzed. In addition, phase noise effects are also con-

sidered for coherent systems. 

DATA 
SOURCE 

ENCODER INTERLEAVER MODULATOR 

RAKE 
RECEIVER 

DE-INTERLEAVER DECODING 
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DATA
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The effects of phase estimation errors in coherent RAKE receivers have been ex-

amined in the literature. In [1] and [2] a RAKE receiver operating at a low signal-to-noise 

ratio (SNR) was analyzed. At low SNR the RAKE receiver has problems estimating the 

channel tap weights, and at any given time, each finger will have a different random 

phase error. A lower bound on the error probability for this case was developed in [1], 

while in [2] an upper bound on the probability of bit error was derived. Phase noise, how-

ever, causes each finger of the RAKE receiver to have the same tap weight estimation 

phase error at any instant in time, since the received pilot tone is used to estimate the tap 

weight. The effects of phase noise on RAKE receivers was first published in [3] by Zie-

mer, Vojcic, Milstein, and Proakis; however, the analysis did not include convolutional 

coding or pulse-noise interference. Both commercial and military systems use convolu-

tional coding to improve the bit error rate. Military systems often have to provide reliable 

communication in the presence of interference, hence it is important to extend the analy-

sis in [3] to include the effect of coding and interference. This dissertation will follow the 

analytical approach in [3] with the appropriate modifications for pulse-noise interference 

and convolutional coding. In our work, we assume that a pilot tone is transmitted on a 

separate frequency and is an integer multiple of two (2n) times the carrier frequency of 

the data signal. The received pilot tone then serves as the input to a phase-lock-loop 

(PLL) and is translated down to the carrier frequency of the data so it can be used for co-

herent demodulation, as shown in Figure 1.3.  

Received Pilot Tone                                                                                 Pilot Tone

                                                                                                                  For Demodulation

First Order
Phase-Lock-Loop

Divide by
     2*n

 
Figure 1.3 Processing Received Pilot Tone. 

 
The analysis is done for various levels of the PLL loop SNR in order to determine how 

coherent systems perform for different values. It is also assumed that the pilot tone is re-

ceived with flat fading and either AWGN or AWGN plus a noise-like interference signal 

that is modeled as additive Gaussian noise. With these assumptions, the effect of pulse-
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noise interference with various levels of received signal-to-noise-ratios on the pilot tone 

can be investigated. The effect of AWGN on a first order phase-locked loop is a Tikonov 

distributed phase error as shown in [4]. We will show that hard decision Viterbi decoding 

can perform better than soft decision Viterbi decoding in the presence of Tikonov distrib-

uted phase noise.   

Commercially available soft decision Viterbi decoders are designed for AWGN 

channels. In [5] it was shown that these decoders perform poorly in the presence of pulse-

noise interference and that hard decision Viterbi decoding performs better when a pulse-

noise interference signal is present. Several modifications to improve the performance of 

soft decision Viterbi decoding have been examined in the literature. In [6] the concept of 

a noise-normalized receiver was introduced, and simulation results in [7] show that the 

clipper receiver works slightly better than the noise-normalized receiver. In this disserta-

tion, the performance of a maximum-likelihood RAKE receiver optimized for both 

AWGN and pulse-noise interference is derived, and the resulting performance is com-

pared with those obtained using the RAKE receiver designed for AWGN only.  

There are various types of channel fading, but in this dissertation frequency-

selective, Ricean distributed fading is assumed. Ricean fading has two components, a di-

rect, or line-of-sight, component and a diffuse component. The ratio of the power of the 

direct to diffuse component will be referred to as K.  When  0K =  there is no direct 

signal component, and this is referred to as Rayleigh fading. If K→∞  then there is no 

diffuse component, hence no fading, which happens in line-of-sight communications 

when there is nothing between the transmitter and receiver that can scatter the signal. 

Frequency-selective fading implies that different spectral components of the sig-

nal are affected differently by the channel. For flat fading channels, all the frequency 

components of the transmitted signal experience the same amount of fading. It can be 

shown that the frequency-selective channel can be modeled as an infinitely long tapped 

delay line with tap spacing 1/W  where W is the noise-equivalent bandwidth of the base-

band signal, and time-varying tap weight coefficients [8]. For a given channel multipath 

spread, we know that for time delays greater than the multipath spread mT  there is virtu-

ally no signal energy. Hence, a very good model for the frequency-selective channel is 
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obtained by using a tapped delay line with only mL T W=  taps. For the frequency-

selective channel where 1 ,mT W  the time delay  1 W  between successive taps is suffi-

cient to insure that each of the tap weights are mutually uncorrelated [8]. This  model of a 

frequency-selective channel is shown in Figure 1.4. 

                                                                                            … 

                                                                                               

                                                                                             …  

 

 

 

 

 

Figure 1.4 Model of the frequency-selective fading channel. 
 

The variables 1α , 2α , and Lα  are the channel tap weights that scale the magnitude of the 

thl  signal component by lα  and the phase of the thl  signal component by lα∠ , and dT  

is a fixed time delay. The summer adds the L baseband signals together, and the result is 

a frequency-selective fading signal. 

 The adjacent bits interfere with each other, as shown in Figure 1.5, when several 

copies of the transmitted signal are received with different delays. If the three signals 

shown in Figure 1.5 were added together, the interference between adjacent bits causes 

intersymbol interference (ISI), which increases the bit error rate. In a coherent RAKE re-

ceiver the L different signals are separated, phase shifted to remove the phase offset im-

parted by the communication channel, and then  coherently added together. 

Flat Fading Signal 

1α 2α jα

                   SUMMER 

Frequency Selective Fading Signal 

dT dT dT  
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Figure 1.5 Three versions of the same signal with different amplitudes and delays. 
 

This eliminates ISI and increases the received signal-to-noise ratio (SNR). Unfortunately, 

phase noise degrades the RAKE receiver channel tap weight estimation as well as the re-

ceived signal demodulation. In [3] Ziemer, Vojcic, Milstein, and Proakis did not include 

both of these effects. 

 A RAKE receiver separates the effective L different received signals in a signal 

transmitted over a frequency-selective channel by using the correlation properties of di-

rect sequence spread spectrum (DSSS) signals. The correlation function for a DSSS sig-

nal is 1 for zero delay, but falls linearly to 1 N− , where N  is the length of the spreading 

sequence, for delays of one chip or greater. The second generation digital standard for 

cellular telephones IS95 uses a sequence that has a length of 152 1−  for the  
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forward channel spreading. As a result, the correlation is ( )151 2 1 0− ≈  for delays greater 

than a chip. This means that any multipath components arriving with a delay greater than 

one chip will have zero correlation. 

The analysis of the coherent RAKE receiver assumes that a pilot tone and the data 

are transmitted on separate frequencies so that the effects of interference on the carrier 

and interference on the data can be analyzed separately. The pilot tone is assumed to have 

a fixed average SNR, which enables the random phase noise effects to be analyzed by 

fixing the random phase offset and then integrating over the probability density function 

(pdf) of the phase noise to remove the dependence on the random phase offset. However, 

this method cannot be used when the pilot tone phase noise is time varying, especially 

when the pdf for the phase noise depends on the SNR of the pilot tone. Commercial IS95 

systems transmit the pilot tone and data on the same frequency, but encode them with 

separate Walsh functions. The pilot tone is encoded with the all ones Walsh function, 

which allows the receiver to recover the pilot tone with a lowpass filter. In this case, 

pulse-noise interference would be able to affect the pilot tone and the data at the same 

time, which would cause a time-varying phase noise on the received pilot tone, and it 

would not be possible to derive analytic results. Analytic results presented here are  ap-

plicable to an IS95-like system with a constant phase noise level. For AWGN channels 

without phase noise, soft decision Viterbi decoding is better than hard decision Viterbi 

decoding [5]; however, we will show that hard decision Viterbi decoding is better than 

soft decision Viterbi decoding when the pilot tone is received with a 10-dB SNR or 

lower.  

 For cases of severe fading, a noncoherent RAKE receiver is generally used since 

noncoherent receivers do not need to track the phase of the received signal. This means 

that noncoherent RAKE receivers are not affected by phase noise and do not have to esti-

mate the phase of the channel tap weight. The drawback of using a noncoherent RAKE 

receiver is that the receiver will have noncoherent combining losses when  
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combining noncoherently detected signals [8]. The performance of a noncoherent RAKE 

receiver in the presence of pulse-noise interference will be compared and contrasted with 

that of a coherent RAKE receiver. 

 The coherent and noncoherent RAKE receivers will be compared using an expo-

nential multipath intensity profile, which is the power of the multipath signal as a func-

tion of delay for a given instant of time. The performance of the RAKE receiver is best for 

a uniform multipath intensity profile; however, real world systems seldom operate over 

channels with uniform multipath intensity profiles. Since an exponential multipath inten-

sity profile is a good approximation for a congested urban area [9], in this dissertation the 

multipath intensity profile is assumed to be exp( )τψ− , where τ  is the delay and ψ  is 

determined by how quickly the power decreases as τ  increases. In this work we assume 

that the first finger of the RAKE receiver has a delay 0 <τ <1, the second finger has a de-

lay 1<τ < 2  the third finger has a delay 2 <τ <3, and so on. Both the coherent and the 

noncoherent RAKE receivers will be analyzed with this exponential multipath intensity 

profile. 

 In summary, this is the first time that a coherent RAKE receiver with phase noise, 

pulse-noise interference and convolutional coding has been analyzed. While soft decision 

Viterbi decoding outperforms hard decision Viterbi decoding for AWGN channel with 

perfect phase synchronization, it is shown that the reverse is true when the pilot tone is 

received with a 10-dB SNR or lower. A similar result was obtained in [10] where 

Shamain and Milstein demonstrated that increasing the antenna diversity beyond two ac-

tually increased the probability of bit error for a fading channel and a fixed antenna aper-

ture when the loop SNR was 5 dB. In order to get the probability of bit error to continu-

ally decreased as the antenna diversity increases, Shamain and Milstein found that a loop 

SNR of 20 dB was required. In [11,12]  performance of a coded, DSSS signal with fading 

and pulsed-noise interference was analyzed, but these results did not include AWGN and 

phase noise effects. The maximum likelihood receiver for a coherent RAKE receiver with 

pulse-noise interference is also derived in this dissertation for the first time. Additionally, 

this is also the first time that a noncoherent BFSK RAKE receiver with pulse-noise  
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interference and convolutional coding has been analyzed. The maximum-likelihood re-

ceiver for a noncoherent BFSK RAKE receiver with pulse-noise interference is also de-

rived and analyzed. 

 This chapter described the system investigated, presented the frequency-selective 

fading channel model and introduced the RAKE receiver and imperfect phase synchroni-

zation concepts. The system analyzed was compared with IS95-like wireless communica-

tion systems. Finally, related research was discussed with an emphasis on the unique con-

tributions from this dissertation. 

  In the second chapter, the coherent RAKE receiver is analyzed. We begin by ana-

lyzing the coherent RAKE receiver without phase noise and include phase noise effects 

on demodulation and channel-tap-weight estimation next. Convolutional coding with 

both hard and soft decision Viterbi decoding is also considered. Ricean fading, pulse-

noise interference and AWGN are included in the analysis. In order to optimize the per-

formance, the maximum-likelihood coherent RAKE receiver for pulse-noise interference 

and AWGN is derived and compared with the performance of a coherent RAKE receiver 

optimized only for AWGN.  

 Chapter III discusses the performance of noncoherent RAKE receivers in the pres-

ence of pulse-noise interference and AWGN. Once again, convolutional coding with both 

hard and soft decision Viterbi decoding is included in the analysis. The received signal is 

assumed to experience Ricean fading, pulse-noise interference and AWGN. The maxi-

mum-likelihood receiver for pulse-noise interference and AWGN was derived for the 

noncoherent RAKE receiver and the performance results were compared with a nonco-

herent RAKE receiver designed for only AWGN only. This comparison is of interest be-

cause commercial RAKE receivers are designed for AWGN only channels. 

 Next, Chapter IV summarizes the findings and presents recommendations for fur-

ther research. 
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II. COHERENT RAKE RECEIVER PERFORMANCE 
 

 The received signal obtained after transmission over a frequency-selective multi-

path channel as shown in Figure 1.4 is given by 

 ( ) ( )Re ,j tr t r t e ω⎡ ⎤= ⎣ ⎦  (2.1) 

where ω  is the carrier frequency in radians and the complex envelope ( )r t  is given by 

 ( )

1
( ) 2 ( ) ( ) .d i

l
j i T

c i d d
i

r t A c t iT d t iT e ω αα − −∠

=

= − −∑  (2.2) 

The signal ( )r t can be recovered by a RAKE receiver with k fingers, as shown in Figure 

2.1, where 2 cA  is the unfaded carrier amplitude, iα  is the channel tap weight deter-

mined by the multipath intensity profile,  

 ( )( ) Re j tc t c t e ω⎡ ⎤= ⎣ ⎦  (2.3) 

is the locally generated chipping waveform where ( )c t  is the complex envelope of the 
 

 

Figure 2.1 Coherent RAKE receiver. 
 

              2 *( )c t

                     ( )r t                             ( )r t                             ( )r t

                     1
12 j

cA e αα − ∠                      2
22 j

cA e αα − ∠                      2 kj
c kA e αα − ∠

                                                                                     ( )  = Re ( )y t

dT dT

                       SUMMER AND INTEGRATOR

dT



 12

chipping waveform, and ( )d t  is the baseband data waveform which equals 1s  when a 

binary “1” is transmitted and 0s  when a binary “0” is sent. The channel is assumed to 

vary slowly compared to the bit period so that iα  can be modeled  as a constant during 

each bit. Each of the k components is modeled as a flat fading signal and can have a dif-

ferent fading coefficient iα , which has a magnitude iα  and a phase iα∠ . For this dis-

sertation, the channel tap weights are modeled as Ricean distributed random variables. 

The chipping waveform complex envelope ( )c t , derived from the chipping se-

quence nc , is assumed to have a chip rate matched to the RAKE finger spacing dT . The 

autocorrelation function for the chipping waveform is given by [13] 

 ( )
1 if 0

1 if 0 ,ccR
N

N

τ
τ

τ

=⎧
⎪= −⎨

< <⎪⎩

 (2.4) 

 
 which can be approximated by  

 ( ) ( )  for ccR N Nτ δ τ τ= − < <  (2.5) 

and is periodic with a period of N. This approximation is good for DSSS signals with 

very long PN sequences and for orthogonal sequences. The thk  finger of the RAKE re-

ceiver multiplies the received signal by ( ) ( )2 2 * d kj k T
c k dA c t kT e ω αα − +∠− . This elimi-

nates the phase difference between the fingers so that each finger can be coherently 

summed together and integrated over the period of a data bit. The operation of multiply-

ing by a known reference signal and integrating is referred to as a correlation receiver 

[14]. Since the multipath components of the received signal are delayed by one chip or 

more, from (2.5) we see that only the multipath component with zero delay compared to 

the reference signal will correlate with the reference signal and the other multipath com-

ponents will integrate to zero. The complex envelope of the signal at the output of the 

RAKE receiver is given by 
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( ) ( ) ( )

( )

1

1

1 2 2 *

           2 ( ) ( ) ,

d j

b

d i

t k
j m T

c m d
mb t T

l
j i T

c i d d
i

y t A c mT e
T

A c iT d iT e d

ω α

ω α

α τ

α τ τ τ

− +∠

=−

⎡ ⎤− −∠⎣ ⎦

=

= −

× − −

∑∫

∑
 (2.6) 

and the real baseband output can be found by taking the real part of (2.6). Eliminating the 

terms that integrate to zero in (2.6), we get  

 ( ) ( ) 22

1

2 .
k

c j
j

y t A d t α
=

= ∑  (2.7) 

Hence, the RAKE receiver separates the multipath components, removes the phase offset, 

and then coherently combines them. Since the receiver collects all received signal paths 

that carry the same information on separate fingers, its action is similar to the way dirt 

collects between the fingers of a RAKE when one RAKEs the ground in a garden and thus 

was named a RAKE receiver. 

A. TAP WEIGHT ESTIMATION 

 The channel tap weights 1α , 2α , …, lα  scale both the amplitude and phase  of the 

received signal. Since the channel shifts the phase by lα∠ , the RAKE receiver must shift 

the phase on each finger by lα−∠  for coherent combining. A block diagram illustrating 

the technique for estimating the channel tap weights is shown in Figure 2.2. First, the re-

ceived signal is mixed with a locally generated chipping waveform that is both chip and 

sequence  synchronized with the received signal. Mathematically, the output of the first 

mixer on the thk  finger can be written 

 ( ) ( ) ( )
1

1
2 2 *( ) ( ) ( ) .d b i d b

l
j i T T j kT T

c i d b d b d b
i

y t A c t kT T c t iT T d t iT T e eω ω α ωα − + −∠ − +

=

= − − − − − −∑ (2.8) 

The above result is delayed by one bit to allow for demodulation and then multiplied by 

the previous bit decision. At the output of the second mixer, we have 

 ( ) ( ) ( ) ( )2
2

1

2 2 *( ) ( ) .d b i d b
l

j i T T j iT T
c i d b d b d b

i

y t A c t kT T c t iT T d t kT T e eω ω α ωα − + −∠ − +

=

= − − − − − −∑ (2.9) 

The lowpass filter then removes the high frequency terms, and from (2.5) the output of 

the lowpass filter is zero when i k≠ . Since ( ) ( )* 1d b d bc t kT T c t kT T− − − − = , the com-

plex output of the thk  finger is 
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 ( ) ( )22 2 .kj
c k d by t A d t kT T e αα ∠= − −         (2.10) 

Since BPSK signaling is used, ( )d t  is either 1+  or 1− , and ( )2d t  is always 1+ . Thus, 

(2.10) can be simplified to 

 ( ) 2 2 .kj
c ky t A e αα ∠=  (2.11) 

 

 

Figure 2.2 Tap Weight Estimator for a Coherent RAKE Receiver. 
 

 

  

             2 *( )c t

                                                                   ( )r t
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From (2.11) we see that the tap weight estimator provides estimates of both the magni-

tude of the channel tap weight kα  as well as the phase shift kα∠  and scales these esti-

mates by 2 cA , the unfaded carrier amplitude. 

 

B. PHASE NOISE MODEL 

Conventional IS95 wireless communication systems can recover the pilot tone on 

the forward channel by using a low pass filter. This process introduces AWGN which 

mixes with the AWGN on the data signal and produces multiplicative noise when the re-

covered pilot tone (plus AWGN) is used to demodulate the data bits. In order to remove 

the noise from the pilot tone, we can pass the received pilot tone through a bank of 

matched filters which are matched to different frequencies. The frequency of the pilot 

tone can then be estimated by interpolating between the two filters with the highest out-

put. This previous step eliminates noise on the pilot tone but can produce a slight fre-

quency offset in the synthesized pilot tone, and frequency offsets in the pilot tone degrade 

the data demodulation. Finally, we can use a phase-locked loop to track the pilot tone; 

however, signal fading and AWGN cause phase noise at the phase-locked loop output. 

   Phase noise is the random phase variation of the carrier and causes the carrier to 

deviate from a perfect cosine wave. It is shown in [4] that a received signal and AWGN 

applied to the input of a first order phase-locked loop causes Tikonov distributed phase 

noise which is a function of the loop SNR. The pdf for the Tikonov distributed phase er-

ror is [4] 

 
0

exp( cos( ))( | ) ,
2 ( )

P
I
β φφ β
π β

≈  (2.12) 

where β  is the loop SNR, which can be affected by channel fading, and 0I  is the modi-

fied Bessel function of the first kind and order zero. A plot of the Tikonov pdf for various 

values of loop SNR is shown in Figure 2.3. The solid line shows the Tikonov pdf  
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Figure 2.3 ( | )P φ β  vs. φ  for Tikonov phase noise. 

 
for a loop SNR of 15 dB, and is similar to a Gaussian pdf. The trace with large dashes is 

for a loop SNR of 10 dB, which also looks like a Gaussian pdf. The trace with small 

dashes is for a loop SNR of 5 dB, and the probability of large phase offsets increases for 

this level of loop SNR. Recall that there is no signal present when the loop SNR is zero 

( ) dB−∞ , and we expect the phase error from the phase-locked loop to be uniformly dis-

tributed from π−  to π  as shown in Figure 2.3. 

 

C. EFFECT OF PHASE AND FREQUENCY OFFSETS ON BPSK SIGNALS 
 The next step is to analyze how phase noise affects the received signal. Figure 2.4 

shows a BPSK receiver with an unknown frequency offset ω∆  and phase offset φ  in the 
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local oscillator where the output ( )P T  is assumed to be sampled every T seconds. The 

output can then be written as: 

 ( ) ( ) ( )0 0
0

2 2 sin sin .
T

cAP T t t dt
T

ω ω ω φ= + ∆ +⎡ ⎤⎣ ⎦∫  (2.13) 

 

 

                       ( )02 sincA tω                                                              ( )P T             

 

 

                                 ( )02sin tω ω φ+ ∆ +⎡ ⎤⎣ ⎦  

Figure 2.4 BPSK receiver with unknown frequency and phase offset. 
 

Substituting the identity 

 [ ]1sin( )sin( ) cos( ) cos( )
2

a b a b a b= − − +  (2.14) 

into (2.13), we obtain 

 ( ) ( ) ( )0
0

2 cos cos 2 .
T

cAP T t t dt
T

ω φ ω ω φ= ∆ + − + ∆ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫  (2.15) 

Equation (2.15) has a high frequency term at twice the carrier frequency and a baseband 

component. Since every complete cycle of the high frequency term will integrate to zero, 

the high frequency component will either integrate to zero or a very small number if there 

is not an integral number of cycles over the bit period. Hence, the double frequency term 

is negligible and only the baseband term will be present at the output of the integrator. 

Using the identity 

 ( ) ( ) ( ) ( ) ( )cos cos cos sin sina b a b a b+ = −  (2.16) 

 
in (2.15), we get 

 ( ) ( ) ( ) ( ) ( )
0 0

2 cos cos sin sin ,
T T

cAP T t dt t dt
T

ω φ ω φ
⎡ ⎤

= ∆ − ∆⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦
⎣ ⎦
∫ ∫  (2.17) 

 

∫
T

dt
T 0

1  



 18

which can be integrated to produce 

 ( ) ( ) ( ) ( ) ( )sin 2 sin
2 cos cos 1 .c

c

T A
P T A T

T T
ω φ

φ ω
ω ω
∆

= + ∆ −⎡ ⎤⎣ ⎦∆ ∆
 (2.18) 

At this point we will limit our discussion by only considering the phase-locked loop 

tracking problem, which has no frequency offset but unwanted phase noise due to the pi-

lot tone being received with AWGN. Setting ω∆  to zero in (2.18), we get the result  

 ( ) ( )2 cos .CP T A φ=  (2.19) 

Hence, the effect of an unknown phase error at the BPSK receiver is to reduce the ampli-

tude of the carrier by the cosine of the phase error. 

D. EFFECT OF PHASE NOISE ON CHANNEL TAP WEIGHT 
ESTIMATION 

Not only does phase noise affect the data demodulation in a RAKE receiver, it 

also degrades the RAKE receiver channel tap weight estimation. We begin with 

the tap weight estimator shown in Figure 2.2 to include a random phase offset φ  as 

shown in Figure 2.5. For a signal transmitted over a frequency-selective, multipath chan-

nel, the complex envelope of the received signal can be written as shown in (2.2). In this 

case, however, the local oscillator in the receiver is slightly out of phase with the received 

signal, so the locally generated chipping sequence includes a random carrier phase offset 

φ . We can write the complex envelope of the locally generated chipping sequence on the 
thk  finger as 

 ( ) ( )*( ) .dj kT
dl t c t kT e ω φ− −= −  (2.20) 

Multiplying (2.20) by the complex envelope of the received signal (2.2), we get 

 ( ) ( ) ( )
1

1
2 2 *( ) ( ) ( ) .d k d

l
j i T j kT

c i d d d
i

y t A c t kT c t iT d t iT e eω α ω φα − −∠ − −

=

= − − −∑  (2.21) 

The above result is delayed by one bit to allow for demodulation and then multiplied by 

the previous bit decision. At the output of the second mixer, we have 

 ( ) ( ) ( ) ( )
2

1

2 2 *( ) ( ) ( ) .d k d
l

j i T j iT
c i d d d d

i

y t A c t kT c t iT d t kT d t iT e eω α ω φα − −∠ − −

=

= − − − −∑ (2.22) 
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The lowpass filter then removes the high frequency terms, and from (2.5) the output of 
the lowpass filter is zero when .i k≠  Again, since that ( ) ( )* 1d dc t kT c t kT− − = , the 

complex output of the thk  finger is 
 

 

Figure 2.5 Channel Tap Weight Estimator with Phase Noiseφ .  
 

 ( ) ( ) ( )22 2 .kj
c k dy t A d t kT e α φα ∠ += −  (2.23) 

Since BPSK signaling is used, ( )d t  is either 1+  or 1− , and ( )2d t  is always 1+ . Thus, 

(2.23) can be simplified to 

 ( ) ( )2 2 ,kj
c ky t A e α φα ∠ +=  (2.24) 

          ( ) 2 *( ) jl t c t e φ=
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which differs from the tap weight estimate without phase noise only by the je φ−  term. It  

is interesting to note that phase noise affects both the tap weight estimate and the signal 

demodulation and, to this author’s knowledge, no other research has examined the effects 

of both simultaneously. 

E. PULSE-NOISE INTERFERENCE 
In addition to phase noise, interference is also considered. The interference signal 

is modeled as AWGN. Two separate interference scenarios are analyzed since the trans-

mitter is assumed to send a pilot tone on a separate frequency than the data. First, inter-

ference of only the data signal frequency is analyzed. Second, interference of the pilot 

tone is analyzed. When the pilot tone experiences interference, all the data bits are af-

fected by increased phase noise due to the interference since the pilot tone is used to syn-

chronize the receiver local oscillator in order to demodulate the data signal.  

 Pulsing the interference signal is also investigated. Specifically, if the interference 

power spectral density is jN  and the duty cycle is ρ , then the interference power is 

j bN Tρ  where bT  is the bit duration. This assures a constant average power interference 

signal regardless of ρ . Pulsing can be an effective interference strategy because of the 

increased power when interference is present. Since the probability of bit error is given 

by bP ρ= (error rate with pulse-noise interference) + ( )1 ρ− (error rate with AWGN), 

assuming the probability of bit error is small when only AWGN is present, the overall 

probability of error is approximately 3105 −×  if the interference can cause a 50 percent 

probability of error when it is on and if the interference duty cycle ( )ρ  is one percent. 

F. MAXIMUM-LIKELIHOOD RECEIVER FOR CHANNELS WITH 
GAUSSIAN NOISE, PULSE INTERFERENCE, AND DIVERSITY 

The maximum-likelihood receiver for a BPSK signal with d  independent diver-

sity receptions, of which i  have pulse-noise interference, is derived in this section. The 

received signal is designated ( )my t  where m  takes values between 1 and d  to represent 

each of the d  different diversity receptions. The interference waveform is modeled as 

additive Gaussian noise with variance 2
0σ  when only AWGN is present and with vari-

ance 22
0 jσσ +  when interference is present. We begin with a general analysis that is 
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valid for diversity in space, frequency and time. Assuming that the diversity receptions 

are independent, we obtain the joint pdf for the “0” bit when i  diversity receptions ex-

perience interference and d i−  diversity receptions have only AWGN as 

 

( ) ( )( )

( )( )

2 2
0 02 2

10 0

2 2
02 2 2 2

10 0

1 1exp ( )
2 2

1 1             exp ( ) ,
2 ( ) 2( )

d i
d it

mt T
m

i
d

m
m d ij j

f y y s

y s d

τ τ
πσ σ

τ τ τ
π σ σ σ σ

−
−

−
=

= − +

⎛ ⎞ ⎡ ⎤−
= −⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦

⎛ ⎞ ⎡ ⎤−
× −⎜ ⎟ ⎢ ⎥⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎣ ⎦

∑∫

∑

 (2.25) 

and the joint pdf for the “1” bit is given by 

 

( ) ( )( )

( )( )

2 2
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10 0

2 2
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2 2
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d

m
m d ij j
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y s d

τ τ
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τ τ τ
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−

=−
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⎛ ⎞ ⎡ ⎤−
= −⎜ ⎟ ⎢ ⎥
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⎛ ⎞ ⎡ ⎤−
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∑

 (2.26) 

Forming the likelihood ratio [15], we obtain 

 ( )
( )

1

0

1

0

1.
S

S

f y
f y

>
<

 (2.27) 

If the likelihood ratio is greater than 1, the receiver decides bit “1” was sent, and, if the 

likelihood ratio is less than 1, the receiver decides bit “0” was sent. Substituting (2.25) 

and (2.26) into (2.27) and simplifying, we get 

 

( ) ( ) ( ) ( ) ( ) ( )( )
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σ
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−
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>
<

= − +

⎡ ⎤−
− − +⎢ ⎥

⎣ ⎦
⎡ ⎤−
⎢ ⎥× − − +

+⎢ ⎥⎣ ⎦

∑∫

∑
(2.28) 

 
Taking the natural log of both sides and rearranging terms, we obtain 
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For BPSK signals, note that ( ) ( )0 1s t s t= −  so 

 ( ) ( )2 2
0 1 0.s t s t− =  (2.30) 

Substituting (2.30) into (2.29), we get the final form for the log likelihood ratio for a co-

herent RAKE receiver with AWGN and pulse-noise interference: 

 ( ) ( )
1

0

0 1 0 12 2 2
1 10 0

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.
S

S

t td i d

m m m m
m m d ijt T t T

y s y s d y s y sτ τ τ τ τ τ τ τ τ
σ σ σ

−
>
<

= = − +− −

− + −
+∑ ∑∫ ∫ (2.31) 

 
An implementation of the maximum-likelihood receiver is shown in Figure 2.6, where 

21 σ  represents the inverse of the received signal variance, which is equal to 2
01 σ  when 

AWGN is present and ( )2 2
01 jσ σ+  

 ( )my t                     
1
σ

                  0 ( )s t

                                 
1
σ

                   1( )s t

t

t T

dτ
−
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Threshold

>0 bit “0”

<0 bit”1”

t

t T
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−
∫

 
Figure 2.6 Maximum-Likelihood Receiver for Diversity Receptions of Baseband 

BPSK Signals with Pulse Interference. 
 

when the pulse-noise interference is present. The receiver structure shown in Figure 2.6 

can be simplified for BPSK signals. Since 10 ss −= , the result from correlating with 0s  is 

the negative of the result from correlating with 1s , which means that only one correlator 

is necessary. A diagram of the maximum likelihood RAKE receiver for AWGN and 

pulse-noise interference is shown in Figure 2.7, where 21 σ  represents the inverse of the 

variance,  equal to 2
01 σ  when only AWGN is present and ( )2 2

01 jσ σ+  when the pulse-

noise interference is present.  
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Figure 2.7 Maximum-Likelihood Coherent RAKE Receiver for AWGN and Pulse-
Noise Interference. 

 

This RAKE receiver is similar to the one shown in Figure 2.1, except that the out-

put is multiplied by the inverse of the total variance, not just the inverse of the variance 

due to AWGN. The multiplication by the inverse of the variance complicates the RAKE 

receiver because the variance must be computed for every bit, which also requires  addi-

tional circuitry to compute the variance. 

G. MEAN AND VARIANCE OF COHERENT RAKE RECEIVERS    

 We stated earlier that pulse-noise interference causes a time-varying variance 

which we now investigate further. Additionally, we present the method of analysis for 

coherent RAKE receivers with pulse-noise interference and convolutional coding. First, 

we begin by assuming that the received signal can be modeled as a Gaussian random 

variable with a conditional mean of 2 c kA α , where kα  is the random Ricean faded tap 

             2 *( )c t

                             ( )r t                             ( )r t                                            ( )r t

              1
12 j

cA e αα − ∠                        2
22 j

cA e αα − ∠                       2 kj
c kA e αα − ∠

                                                                          2

1
σ

                                                                                      ( )   Re ( )y t =

dT dT

                       SUMMER AND INTEGRATOR

dT
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weight, and a variance of 2
rσ . Since kα  is modeled as a random variable, we obtain the 

conditional probability of bit error and then average over the pdf of the random variable 

kα  to get an average probability of bit error. The first mixer in Figure 2.1 multiplies the 

received signal by the chipping sequence, which removes the spreading but does not 

change the probability distribution of the received signal. The second mixer in Figure 2.1 

multiplies the down-converted received signal by 2 .kj
c kA e αα − ∠  This scales the signal 

by 2 c kA α  and phase shifts the multipath components by kα∠  for coherent combining. 

Hence, the output from the second mixer in Figure 2.1 is a Gaussian random variable 

with mean 222 c kA α  and variance 22 22 c kAσ α .  The coherent RAKE receiver in Figure 

2.1 then sums together the j  fingers. This is the point where pulse interference compli-

cates the analysis. If only AWGN is present, then  the mean at the output of the coherent 

RAKE receiver can be written as 

 22

1
2 ,

l

c k
j

m A α
=

= ∑  (2.32) 

and the variance at the output of the RAKE receiver is 

 22 2 2

1

2 ,
l

r c k
j

Aσ σ α
=

= ∑  (2.33) 

where 2 2
0σ σ=  when only AWGN is present and 2 2 2

0 jσ σ σ= +  when the pulse-noise in-

terference is present. We require 

 2

1

1.
l

k
k

α
=

=∑  (2.34) 

The BPSK bit error rate probability for the RAKE receiver is given by 

 ( ) ( ) ( ) ( )Pr 0 | 0 Pr 0 Pr 0 |1 Pr 1 ,b
r

mP y y
σ
⎛ ⎞

= > + <⎜ ⎟
⎝ ⎠

 (2.35) 

where y is the random variable that represents the RAKE output. Due to the symmetry of 

both the receiver and the noise, when y is modeled as a conditional Gaussian random 

variable, (2.35) can be evaluated to obtain the conditional probability of bit error [17] 
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 ( )2

2 .b
r r

mmP Q
σ σ

⎛ ⎞⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (2.36) 

Substituting (2.32) and (2.33) into (2.36), we get 

 

2
22

1

22 2

1

2
.

2

l

c k
k

b l
r

c k
k

A
mP Q

A

α

σ σ α

=

=

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎛ ⎞ ⎜ ⎟⎝ ⎠=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑

∑
 (2.37) 

Equation (2.37) can be simplified to obtain 

 
22

1
2

2 .
l

c kb j
r

m AP Q α
σ

σ
=

⎛ ⎞
⎜ ⎟⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑  (2.38) 

By defining 

 

22

1
2 ,

l

c k
j

b

A α
γ

σ
==
∑

 (2.39) 

 
the probability of bit error conditioned on bγ  can be written 

 ( ) ( )2 .b b bP Qγ γ=  (2.40) 

This is equation (14.3-2) on page 817 of  [9], which shows how to remove the depend-

ence on bγ  for the case of Rayleigh distributed fading. 

 Pulse interference complicates the analysis since the interference can be on for 

only a fraction of a bit, in which case each finger would have a different variance. In this 

case (2.33) has to be written as 

 22 2 2

1
2

l

r c k k
k

Aσ σ α
=

= ∑  (2.41) 

where 2
kσ  is 2

0σ  when only Gaussian noise is present and 2 2
0 jσ σ+  when the pulse-noise 

interference is present. To prevent this problem, we assume that each bit will either ex-

perience interference for the full bit period or no interference. Since we are not consider-
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ing cases where a fraction of a bit experiences interference, (2.36) is valid, with the addi-

tional consideration that bP  is conditional on whether or not the bit experiences interfer-

ence. 

 The analytic approach taken here is to obtain the pdf at the output of each finger 

of the RAKE receiver and convolve them together to get the pdf for the random variable 

that represents the sum of the RAKE finger outputs. We perform the analysis assuming 

that a bit “0” was transmitted. The probability of bit error is then determined by integrat-

ing the pdf of the random variable that represents the output of the RAKE receiver from 0 

to ∞ . The convolutions are performed by taking the two-sided Laplace transform of each 

finger’s pdf, multiplying the resulting Laplace transforms together, and then taking the 

inverse Laplace transform, which when integrated from 0 to ∞   gives the probability of 

bit error. 

H. ANALYSIS OF A COHERENT RAKE RECEIVER WITH PHASE NOISE 
AND RICEAN FADING 

 In Figure 2.1 the coherent RAKE receiver shown does not include phase noise. 

We have already seen that phase noise causes a random phase error φ  between the lo-

cally generated chipping sequence and the received signal and that the complex baseband 

signal is multiplied by je φ . The received signal shown in Figure 2.8 now includes the 

AWGN ( )( ) Re j tn t n t e ω⎡ ⎤= ⎣ ⎦  where: 

 
0

( ) ( ) 2 ( ) ( ) .d

l
j iT

c i d d
i

r t n t A c t iT d t iT e ωα −

=

= + − −∑  (2.42) 

Recall that multiplying the received signal by a chipping sequence does not affect the 

Gaussian noise, so at the output of the first mixer we get 

 ( ) ( ) ( )
1

0
( ) 2 2 *( ) ( ) ( ) .d k d

l
j i T j kT

c i d d d
i

y t n t A c t kT c t iT d t iT e eω α ω φα − −∠ − −

=

= + − − −∑  (2.43) 

which then is multiplied by the channel tap weight ( )2 kj
c kA e φ αα +∠ , summed with the 

output of the other fingers, and integrated. The real baseband output is then found by tak-

ing the real part of the integrator output 

 ( ) ( ) ( ) ( )22

1
2 cos 2 .

k

c j
j

y t A d t n tφ α
=

= +∑  (2.44) 



 27

 

Figure 2.8 Coherent RAKE Receiver with Phase Noise.  
 

Since kα  is Ricean distributed, then the multiplication by the Ricean faded tap weight 

estimate produces an output at the thk  finger proportional to 2
k kγ α= , which has a non-

central chi-squared distribution [17] 

 ( ) 02 2 2

21 exp 0
2 2

0                                                <0.
k

k k
k

k k k k

k

KK I
f

γ γ γ
γ σ σ σ

γ
Γ

⎧ ⎡ ⎤ ⎛ ⎞⎛ ⎞
− + ≥⎪ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟= ⎨ ⎝ ⎠⎣ ⎦ ⎝ ⎠

⎪
⎩

 (2.45) 

The ratio of direct-to-diffuse power is K  and the diffuse power is 22 kσ . The two-sided 

Laplace transform for a Gaussian random variable with a mean of m  and a variance 2σ  

is equal to [3] 

 ( ) 2 21exp .
2

s sm s σ⎛ ⎞Φ = +⎜ ⎟
⎝ ⎠

 (2.46) 

        2 *( ) jc t e φ
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22 j

cA e φ αα −∠                 ( )2 kj
c kA e φ αα −∠

                                                                                    ( )  = Re ( )y t

dT dT
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Equation (2.44) is the output for the summation of all the RAKE finger outputs. The mean 

value at the output of the thk  finger is 

 ( )22 cos 2 ,c km A φ γ=  (2.47) 

and the variance is 

 ( )2 2 22 cos 2 ,r c kAσ φ γ σ=  (2.48) 

where 2 2
0σ σ=  when only AWGN is present and 2 2 2

0 jσ σ σ= +  when the pulse interfer-

ence is present. From (2.47) and (2.48) we see that both the mean and the variance at the 
thk  finger output are dependent on the noncentral chi-squared distributed kγ  as well as 

the Tikonov distributed φ . Substituting (2.47) and (2.48) into (2.46), we get 

 ( ) ( )
2 2

2| , exp 2 cos 2 .
2k k c k

ss A s σγ φ γ φ
⎡ ⎤⎛ ⎞

Φ = − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (2.49) 

We now remove the dependence on kγ  by integrating over the chi-squared distribution 

function. We rewrite (2.49) as 

 ( ) [ ]| , exp ,k k ks γ φ βγΦ = −  (2.50) 

where 

 ( )
2 2

22 cos 2 .
2c

sA s σβ φ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (2.51) 

Using (2.45) and (2.50), we obtain 

 ( ) ( ) 02 2 2
0

21| exp exp ,
2 2

k k
k k k

k k k

Ks K I dγ γφ βγ γ
σ σ σ

∞ ⎡ ⎤ ⎛ ⎞⎛ ⎞
Φ = − − + ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠⎣ ⎦ ⎝ ⎠

∫  (2.52) 

which can be written 

 ( ) 02 2 2
0

21| exp( ) exp .
2 2

k k
k k k

k k k

Ks K I dγ γφ βγ γ
σ σ σ

∞ ⎡ ⎤ ⎛ ⎞⎛ ⎞
Φ = − − + ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠⎣ ⎦ ⎝ ⎠

∫  (2.53) 

Equation (2.53) can be evaluated using the identity (6.643.4) from [18] 

 ( )
21 2

12
0

2 ! ,
n v x v n v v

v nx e J x dx n e L
β

α α ββ β α
α

−∞ + − − − − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫  (2.54) 
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where ( )v
nL x  is the Lagerre polynomial.  The Bessel function of the first kind and order 

zero 0J  is related to the modified Bessel function of the first kind and order zero 0I  by 

( ) ( )0 0I x J jx=  [18] where 1j = − . From (2.53) we see that 0n v= = , hence we can 

use the relationship  [18] 

 ( )0
0 1.L x =  (2.55) 

Therefore, we obtain the Laplace transform of the pdf at the output of the thk  finger as 

 ( )
2

2 2

21| exp ,
2 1 2 1

k
k

k k

Ks βσφ
σ β βσ

⎛ ⎞−
Φ = ⎜ ⎟+ +⎝ ⎠

 (2.56) 

where β  is defined in (2.51) and 22 kσ  is the diffuse power in each finger. The RAKE re-

ceiver adds the outputs of the fingers together, so the Laplace transform of the pdf of the 

random variable that represents the output of the RAKE receiver can be written 

 ( ) ( )
1

| | .
l

k
k

s sφ φ
=

Φ = Φ⎡ ⎤⎣ ⎦∏  (2.57) 

To remove the dependence on φ  we must still average over the pdf of φ : 

 ( ) ( ) ( )| .s s f dφ φ φΦΦ = Φ∫  (2.58) 

Equation (2.58) must be evaluated numerically.  

      The probability of bit error is the integral from 0 to ∞  of the inverse Laplace 

transform of ( )sΦ . The inverse Laplace transform and the subsequent integration can be 

done recursively using the Gauss-Chebyshev quadrature method. Defining Y as the ran-

dom variable at the output of the RAKE receiver with a pdf given by the inverse Laplace 

transform of ( )sΦ  we have [3] 

 ( ) ( ) ( )
/ 2

1

10 Re Im ,
n

k k k
k

P Y s c jc s c jc E
n

τ τ τ
=

> = Φ = + + Φ = + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑  (2.59) 

where 

 ( )tan 2 1 / 2 ,k k nτ π= −⎡ ⎤⎣ ⎦  (2.60) 

c  is a constant chosen to make the algorithm converge quickly and E  is an error term 

that approaches 0 as n  gets large. Extremely low bit error rates require larger values of 
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n . Values of n  between 200 and 800 were used. Methods for choosing the parameter c  

are discussed in [19], and examples of MATLAB code to implement (2.59) are given in 

Appendix A. 

1. Addition of Pulse Interference  

 The preceding analysis does not include the effect of pulse-noise interference, but 

it can be easily modified to do so. It is assumed that the variance of the received noise is 
2
0σ  when only AWGN is present and 2 2

0 jσ σ+  when the pulse interference is present. The 

only term in the preceding analysis that depends on the variance of the received signal is 

.β  We now define 

 ( )
2 2

2 0
1 2 cos 2 ,

2c
sA s σδ φ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.61) 

and 

 ( ) ( )2 2 2
02

2 2 cos 2 .
2

j
c

s
A s

σ σ
δ φ

⎛ ⎞+
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (2.62) 

When the received signal has only AWGN, we simply substitute 1β δ=  into (2.56) and 

when the interference signal is present we substitute 2β δ=  into (2.56), leading to 

 ( ) ( )1
1

| | , ,
l

i

s sφ φ β δ
=

⎛ ⎞
Φ = Φ =⎜ ⎟

⎝ ⎠
∏  (2.63) 

 
when only AWGN is present and 

 ( ) ( )2
1

| | ,
l

i

s sφ φ β δ
=

⎛ ⎞
Φ = Φ =⎜ ⎟

⎝ ⎠
∏  (2.64) 

when all the fingers experience interference. It should be mentioned that (2.63) and (2.64) 

are conditional on φ  and must be numerically integrated over the Tikonov pdf to remove 

the conditioning on φ  as shown in (2.58). 

2. Maximum-Likelihood RAKE Receiver for AWGN and Pulse-Noise In-
terference 

 The maximum-likelihood RAKE receiver for AWGN and pulse-noise interference 

shown in Figure 2.7 has an additional mixer that multiplies the received signal by the in-
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verse of the variance. Since it is assumed that the bit either completely experiences inter-

ference or no interference, this receiver multiplies the received signal by 2
01 σ  when only 

AWGN is present and by ( )2 2
01 jσ σ+  when the pulse-noise interference is present. Mul-

tiplying by the inverse of the variance affects both the mean and the variance of the signal 

at the output of the RAKE finger. In this case, the mean is given by (2.47) divided by 2σ  

 ( )
2

2

2 cos 2c
ml k

Am φ γ
σ

=  (2.65) 

and the variance is given by (2.48) divided by 4σ  

 2 ,ml mlmσ =  (2.66) 

where 2σ  is 2
0σ  when only Gaussian noise is present and 2 2

0 jσ σ+  when the pulse-noise 

interference is present. The variance of a RAKE receiver designed for AWGN channels is 

proportional to the variance of the received signal as shown in (2.48). For the maximum-

likelihood RAKE receiver designed for AWGN and pulse-noise interference, both the 

mean and variance are proportional to the inverse of the variance. This means that a high 

powered interference signal will tend to drive the RAKE receiver output toward zero, as 

opposed to the RAKE receiver designed only for AWGN where a high powered interfer-

ence signal will drive the output towards infinity. The analysis for this maximum-

likelihood RAKE receiver is the same as the previous analysis except that in this case 

 ( )
2 2

0
3 2

0

2 cos 2 1
2

cA s sσδ φ
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.67) 

when only AWGN is present and 

 
( ) ( ) ( )2 22

0
4 2 2

0

2 cos 2 1
2

jc

j

sA s
σ σ

δ φ
σ σ

⎛ ⎞+
⎜ ⎟= −
⎜ ⎟+ ⎝ ⎠

 (2.68) 

when the interference signal is present. Once again we get 

 ( ) ( )3 3
1

| , | ,
l

i
i

s sφ β δ φ β δ
=

⎛ ⎞
Φ = = Φ =⎜ ⎟

⎝ ⎠
∏  (2.69) 

when only AWGN is present and 
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 ( ) ( )4 4
1

| , | ,
l

i
i

s sφ β δ φ β δ
=

⎛ ⎞
Φ = = Φ =⎜ ⎟

⎝ ⎠
∏  (2.70) 

when all the fingers experience interference. The result is numerically integrated over the 

Tikonov pdf to remove the dependence on φ  as shown in (2.58). 

3. Hard Decision Decoding 
 The previous analysis computed the uncoded bit error rate. Commercial wireless 

standards such as IS95 use a convolutional code to improve the bit error ratio. In this sec-

tion we analyze the performance of a convolutionally encoded signal transmitted over a 

Ricean distributed, frequency-selective fading channel with pulse-noise interference and 

hard decision Viterbi decoding. 

 The probability of bit error bP  is upper bounded by [9] 

 ,
free

b d d
d d

P B P
∞

=

< ∑  (2.71) 

where dB  is the total number of nonzero information bits in all weight d paths, dP  is the 

probability of selecting a code sequence that is a Hamming distance d away from the cor-

rect code sequence, and freed  is the minimum weight path in the convolutional code state 

diagram that diverges from and remerges with the all-zero state [20]. For hard decision 

Viterbi decoding, dP  is given by [9] 

 ( )
1

2

1 d id d iP pd idi
p −

= ⋅ ⋅∑
+=

⎛ ⎞ −⎜ ⎟
⎝ ⎠

 (2.72) 

 

when d is odd and 

 ( ) ( )2 221 1 12
12 2

d dd d d d iiP p p p pd d idi

−
= ⋅ ⋅ ⋅ − + ⋅ ⋅ −∑

= +

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 (2.73) 

when d is even. In  (2.72) and (2.73), to calculate p we must integrate 

 ( ) ( )( ) ( ) ( )( )1 2| | , 1 | ,i is s sφ ρ φ β δ ρ φ β δΦ = Φ = + − Φ =  (2.74) 
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over the Tikonov pdf, numerically invert the Laplace transform, and integrate the result 

from 0 to ∞ . In (2.74) ρ  is the duty cycle of the interference, 1δ  is defined in (2.61) and 

2δ  is defined in (2.62). Figure 2.9 shows the probability of bit error for a three finger 

RAKE receiver with rate ½, constraint length 9 convolutional coding and hard hard deci-

sion Viterbi decoding where 0 15bE N = dB, the pilot tone has a 20-dB loop SNR, the 

ratio of direct-to-diffuse power is 10 dB, and the interference signal has a one percent 

duty cycle ( 0.01ρ = ), a 10% duty cycle ( 0.1ρ = ), and a 100% duty cycle ( 1ρ = ). For a 
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Figure 2.9 Coherent RAKE Receiver with Hard Decision Viterbi Decoding. 
 

rate ½, constraint length 9 convolutional code the first nonzero three terms of the series in 

(2.71) are 12 14 1633 281 2179P P P+ + . An exponential multipath intensity profile (MIP) is 

assumed where each finger has 10 dB less signal energy than the previous finger. We see 

from Figure 2.9, that the interference should be on all the time if it has approximately the 
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same power as the received signal when hard decision Viterbi decoding is used. When 

the interference has less power than the received signal, then pulsing the interference sig-

nal is the best strategy. It is interesting to note that the error rate is extremely low for all 

values of b jE N  when the interference duty cycle is 0.01. We will show that pulsing the 

interference signal is much more effective against soft decision Viterbi decoding. 

 For the case of the maximum-likelihood RAKE receiver designed for AWGN and 

pulse-noise interference, the probability of making an error p can be calculated by inte-

grating 

 ( ) ( )( ) ( ) ( )( )3 4| | , 1 | ,s s sφ ρ φ δ δ ρ φ δ δΦ = Φ = + − Φ =  (2.75) 

over the Tikonov pdf as shown in (2.58), numerically inverting the Laplace transform and 

integrating the result from 0 to ∞ . The results for hard decision Viterbi decoding using 

the maximum-likelihood RAKE receiver designed for AWGN and pulse-noise interfer-

ence were the same as the RAKE receiver designed for AWGN. This can be explained by 

noting that, for the RAKE receiver designed for AWGN, the interference signal causes the 

variance of the received signal to be very large when the interference signal is on, which 

in turn can lead to a 50 percent error rate. The maximum-likelihood RAKE receiver de-

signed for AWGN and pulse-noise interference causes the mean and variance to tend to-

wards zero when the interference signal is present. Since hard decision Viterbi decoding 

makes decisions on a bit-by-bit basis, a received signal with a mean and variance of zero 

will cause a 50 percent error rate. Hence, we should not expect any improvement from 

the maximum-likelihood RAKE receiver designed for AWGN and pulse-noise interfer-

ence when hard decision Viterbi decoding is used. 

4. Soft Decision Viterbi Decoding 

 For soft decision Viterbi decoding, dP  can be written as [9] 

 ( ) ( )
0

1 ,
d

d ii
d d

i

d
P P i

i
ρ ρ −

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  (2.76) 

where ρ  is the duty cycle of the pulse-noise interference, and ( )dP i  is the probability of 

selecting a code word a Hamming distance d from the correct code word, given that i of 

the d receptions experience interference. To calculate ( )dP i  we must integrate 
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 ( ) ( ) ( )1 2
1 1

| | , | ,
i d il l

k k
k k

s s sφ φ β δ φ β δ
−

= =

⎛ ⎞ ⎛ ⎞
Φ = Φ = × Φ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏ ∏  (2.77) 

over the Tikonov pdf to eliminate the dependence on φ  as shown in (2.58), numerically 

invert the Laplace transform, and integrate the result from 0  to ∞ . As can be seen from 

(2.77), this must be done d l+  times. We will use the same rate ½, constraint length 9 

convolutional code where the first three terms of (2.71) are 12 14 1633 281 2179P P P+ + , 

which are sufficient to calculate the probability of bit error. Even though the dB  terms are 

increasing, the dP  terms in (2.71) go to zero much faster. An exponential MIP is assumed 

where each finger has 10 dB less signal energy than the previous finger. Figure 2.10 

shows results obtained for a three finger RAKE with soft decision Viterbi decoding where 

0 15bE N = dB, the pilot tone has a 20-dB loop SNR, a ratio of direct-to-diffuse power of 

10 dB, and a interference signal that has a one percent duty cycle ( 0.01ρ = ), a ten per-

cent duty cycle ( 0.1ρ = ), and a 100 percent duty cycle ( 1ρ = ). The case where the inter-

ference signal is on all the time was also simulated for low values of b jE N  since the 

union bound given by (2.71) is know to be loose for low SNR. Recall that the signal input 

to the RAKE receiver is assumed to be a Gaussian random variable with a Ricean distrib-

uted mean. Multiplication by a Ricean distributed tap weight estimate produces a noncen-

tral chi-squared mean value [21]. The Matlab statistics toolbox has a noncentral chi-

squared random variable generator. These samples must be multiplied by ( )cos 2φ  where 

φ  is a Tikonov distributed random variable. A Tikonov random variable generator was 

developed specially for this simulation. The mean value is then multiplied by 1−  to simu-

late all-zeros being transmitted. This eliminates the need to convolutionally encode the 

data since an all zero file input to a convolutional encoder will produce an all-zero output 

file. The variance of the received Gaussian random variable is 2 2
0 jσ σ+ . Since the mean 

and variance are known, the received Gaussian random variable can now be simulated 

using the Matlab randn command. Each finger was simulated separately and summed 

together. The resultant signal was then quantized and convolutionally decoded using the 

Matlab communications toolbox. Any data bit ones at the decoder output represent a bit 
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error, so the bit error rate was computed by summing the values in the convolutional de-

coder output file and then dividing by the total number of bits simulated. Monte-Carlo 

simulations were conducted for each point where an asterisk is shown in Figure 2.10. A 

line between simulated values has been added to help the eye follow the progression be-

tween simulated points. Since the error rate varied slightly between simulations, three 

simulation were run at each point, and the median value was plotted in Figure 2.10. Due 

to the computational complexity, only error rates with analytical values above 510−  were 

simulated. These simulation results are found to be within 1 dB of the analytical results, 

which shows that using only the first three terms of the union bound provides an accurate 

estimate of the system performance.  

We see that for soft decision Viterbi decoding, pulsing the interference signal de-

grades the performance much more than it does for hard decision Viterbi decoding. Soft 

decision Viterbi decoding uses soft decision receiver outputs with confidence estimates 

and, if any incorrect decisions have a large confidence value, then soft decision decoder 

performance significantly degrades. Essentially, the soft decision Viterbi decoding algo-

rithm attempts to combine several soft decision outputs together in order to decode the 

received data. The maximum-likelihood receiver weights the soft decision outputs by the 

inverse of the variance, which we derived in Section F, to avoid placing high confidence 

values on bits with interference. Unfortunately, conventional RAKE receivers do not per-

form this function. By modeling the soft decision receiver output as a Gaussian random 

variable and noting that the sum of independent Gaussian random variables is a Gaussian 

random variable where the mean is the sum of the means and the variance is the sum of 

the variances [15], it is easy to see that any bits that experience interference will dramati-

cally increase the bit error ratio unless the signal power is greater than the interference 

power. 

For the case of the maximum-likelihood RAKE receiver designed for AWGN and 

pulse-noise interference, the mean and variance of the signal on each RAKE finger both 

approach zero when a large interference signal is present. This means that soft decision 

Viterbi decoding will perform much better in the presence of pulse-noise interference 
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Figure 2.10 Coherent RAKE Receiver with Soft Decision Viterbi Decoding. 

 

since this RAKE receiver does not allow the bits with interference to dominate the decod-

ing decision. Results for a three-finger maximum-likelihood RAKE receiver designed for 

AWGN and pulse-noise interference with soft decision Viterbi decoding where 

0 15bE N = dB, the pilot tone has a 20-dB loop SNR, a ratio of direct-to-diffuse power of 

10 dB, and a interference signal with a one percent duty cycle ( )0.01ρ = , a ten percent 

duty cycle ( )0.1ρ =  and a 100 percent duty cycle ( )1.0ρ =  are shown in Figure 2.11. 

As expected, Figure 2.11 shows that the maximum-likelihood RAKE receiver designed 

for AWGN and pulse-noise interference mitigates the effect of pulse-noise interference. 
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Figure 2.11 Maximum-Likelihood RAKE Receiver for AWGN and Pulse-Noise 

Interference with Soft decision Viterbi decoding. 
 

When the interference signal is on all the time, the performance of the maximum-

likelihood RAKE receiver designed for AWGN and pulse-noise interference  is the same 

as the conventional RAKE receiver.  

5. Optimal Finger Spacing 

Since we assumed an exponential multipath intensity profile where the SNR for 

each finger was 10 dB below the previous finger, it may be possible to obtain better per-

formance by trying to reduce the difference in the signal power on each finger. Diversity 

performance improves when we decrease the finger spacing to reduce the difference in 

finger SNR; however, if we limit the RAKE to three fingers then the total received power 

decreases as we decrease the finger spacing. In Figure 2.12 we show an example of the 

multipath intensity profile as a function of delay with two different possible RAKE finger 

spacing. In the one case the first finger collects 90 percent of the received power, the sec-
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ond nine percent, and the third 0.9 percent; while in the other case, the first finger collects 

53.54 percent of the received power, the second collects 24.87 percent, and the third fin-

ger collects 11.56 percent. The second case provides better diversity performance since 

the received power on the three fingers are closer together, but it only collects about 90 

percent of the received signal power as opposed to the first case which collects 99.9 per-

cent of the received signal power. 
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Figure 2.12 Multipath Intensity Profile with two Different RAKE Finger Spacings. 

 

 

In order to find the optimal tradeoff between losing received signal power and getting 

better performance, we used hard decision Viterbi decoding and started with a RAKE re-

ceiver that recovered 99.9 percent of the received signal power and compared the results 

with a RAKE receiver that recovered one percent less power. We continued reducing the 

received signal power by one percent until the probability of bit error started to increase. 
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We found that, for a three finger RAKE, recovering 92 percent of the received signal 

power produces the lowest probability of bit error. In Figure 2.13 we show the results for 

a RAKE receiver that recovers 99.9 percent of the received power and a RAKE receiver 

that recovers 92 percent of the received power for hard decision Viterbi decoding where 

0 15bE N = dB, the pilot tone has a 20-dB loop SNR, a ratio of direct-to-diffuse power of  
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Figure 2.13 Two Different Finger Spacings with Hard Decision Viterbi Decoding. 

 
 10 dB, a interference signal that has a one percent duty cycle ( )0.01ρ = , ten percent 

duty cycle ( )0.1ρ = , and a 100 percent duty cycle ( )1.0ρ = . We see that for this 0bE N  

there is very little improvement at low values of b jE N , and the improvement at high 

values of b jE N  will probably not be noticed in a practical system. The hard decision 
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results, however, show that recovering 92 percent of the received power produces the 

lowest probability of bit error for large b jE N .  

 Since the maximum-likelihood RAKE receiver for AWGN and pulse-noise inter-

ference with soft decision Viterbi decoding reduces the probability of bit error for pulse-

noise interference down to the irreducible error floor caused by phase noise, we compare 

the performance of a finger spacing that recovers 99.9 percent of the received power 

against a finger spacing that recovers 92 percent of the received power with a interference 

signal that is on all the time. We make the same assumptions that we did for hard deci-

sion Viterbi decoding; however, with soft decision Viterbi decoding the error rate slightly 

increases when only 92% of the received power is recovered as shown in Figure 2.14. 

 It seems that when pulse-noise interference is present, performance with both hard 

and soft decision Viterbi decoding does not improve much when the RAKE finger spac-

ing is decreased to provide better diversity performance. In fact, the soft decision per-

formance was slightly worse. These results were obtained with 0 15bE N = dB. The re-

sults might be different for larger or smaller 0bE N ; however, based on the results ob-

tained, we can conclude that it is not worth the extra system complexity to constantly 

measure the multipath intensity profile and adjust the finger spacing for large b jE N . 

6. Increased Phase Noise 
 The previous results have all been for a loop SNR of 15 dB. For a first order 

phase-locked loop, the loop SNR can be written 

 SNR 2Loop ,p

L

E
Bσ

=  (2.78) 

where pE  is the energy of the pilot tone, 2σ  is the loop noise power, which includes both 

thermal noise and interference noise, and LB  is the loop bandwidth. Decreasing the en- 
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Figure 2.14 Two Different Finger Spacings with Soft Decision Viterbi Decoding. 

 

ergy of the pilot tone or increasing either the loop bandwidth or noise power will de-

crease SNRLoop . Figure 2.15 shows the significant error rate increase for a maximum-

likelihood RAKE receiver designed for AWGN and pulse-noise interference with soft de-

cision Viterbi decoding with a loop SNR of 10 dB, 15 dB and 20 dB when 

0 15bE N = dB, the ratio of direct-to-diffuse power is 10 dB, and the interference signal 

has a ten percent duty cycle. Monte-Carlo simulations performed using MATLAB show 

the error rate is 0.5 for a loop SNR of 10 dB, and is almost 210−  at 15-dB loop SNR. 

Phase noise causes an irreducible error floor and problems with the union bound since 

12 14 16P P P≈ ≈ . The simulation results with 10-dB and 15-dB loop SNR have lower error 

rates than the results obtained analytically since the union bound used to obtain analytic 

results is very loose when phase noise dominates system performance. Still, the simulated 
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Figure 2.15 Soft Decision Viterbi Decoding with Various Loop SNR Values. 

 

bit error ratio (BER) was extremely poor for a decoded signal. Since soft decision Viterbi 

decoding cannot provide reliable communication for a loop SNR of 15 dB or below, the 

classic interference strategy of interference the pilot tone is highly effective in this case. 

 Unlike soft decision Viterbi decoding, hard decision Viterbi decoding only uses 

the receiver estimate of what bit was transmitted without any estimate of the receiver 

confidence. While phase noise increases the bit error rate, a convolutional code can per-

form extremely well when the encoded error rate is less than 210− . Soft decision Viterbi 

decoding, however, uses an estimate of the receiver confidence, which is adversely af-

fected by phase noise. Hence, it is expected that hard decision Viterbi decoding will per-

form better for 10-dB and 15-dB loop SNR. Figure 2.16 shows the performance for a 

maximum-likelihood RAKE receiver designed for AWGN and pulse-noise interference 

with hard decision Viterbi decoding, the direct-to-diffuse power is 10 dB, and the inter-
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ference signal has a ten percent duty cycle. The results show that reliable communication 

is possible even with 10-dB loop SNR when hard decision Viterbi decoding is used. In 

fact, the performance for 10-dB and 15-dB loop SNR was better for hard decision Viterbi 
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Figure 2.16 Hard Decision Viterbi Decoding with Various Loop SNR Values.  

 

decoding for all b jE N  than for soft decision Viterbi decoding. When the loop SNR is 

equal to 20 dB, however, soft decision Viterbi decoding performs better than hard deci-

sion Viterbi decoding for small b jE N . The soft decision Viterbi decoding used to obtain 

the results plotted in Figure 2.15 assumed a maximum-likelihood RAKE receiver for 

AWGN and pulse-noise interference. If a conventional RAKE receiver designed for 

AWGN only is used, then the performance for soft Viterbi decision decoding for small 

b jE N  is significantly worse than for hard decision for a 20-dB loop SNR. A decrease in 

the duty cycle of the pulse-noise interference signal causes problems for the RAKE re-
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ceiver optimized for AWGN when soft decision Viterbi decoding is used; however, when 

hard decision Viterbi decoding is used, the performance for small b jE N  improves as the 

duty cycle decreases. 

 The maximum-likelihood RAKE receiver for pulse-noise interference was de-

rived, and this detector improves the performance for soft decision Viterbi decoding 

down to the phase noise error floor. Unfortunately, soft decision Viterbi decoding per-

formance cannot be improved below the phase noise error floor. Hard decision Viterbi 

decoding, on the other hand, performs much better than soft decision Viterbi decoding for 

low values of loop SNR since soft decision Viterbi decoding suffers more from the ef-

fects of imperfect phase synchronization. A plot of the phase error as a function of loop 

SNR was shown in Figure 2.3. As the loop SNR decreases, the phase error increases, 

which leads to performance degradation as a result of imperfect phase synchronization. 

Since soft decision Viterbi decoding makes bit decisions by combining a sequence of re-

ceived bits, random losses due to imperfect phase synchronization affect the entire se-

quence of bits and are devastating when the pilot tone has a loop SNR of 15 dB or less. 

Hard decision Viterbi decoding makes decisions on a bit-by-bit basis and is only affected 

by phase noise if the imperfect phase synchronization loss is large enough to cause a bit 

error.  

7. Varying the Value of K 

 The previous results were for a direct-to-diffuse power ratio of ten ( )10K = . 

There are other important cases such as when K →∞  which represents no fading and 

0K =  which represents Rayleigh fading. The RAKE receiver is not optimal for channels 

without fading because all the signal power will be on the first finger and the other fin-

gers will only add additional noise. Worst case fading occurs when there is no direct line 

of sight component ( )0K = . 

In Figure 2.17, we show the performance for a three finger RAKE receiver with 

soft decision Viterbi decoding where 0 15bE N = dB, the pilot tone has a 20-dB loop 

SNR, the interference signal has a 100 percent duty cycle ( )1.0ρ = , and ratio of direct-

to-diffuse power of 0, 10 and 100. The performance obtained for a direct-to-diffuse 
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power ratio of 100 approaches that obtained for  K →∞ , and performance is only 

slightly better than the 10K =  moderate fading case. Worst case fading 0K =  signifi-

cantly increases the probability of bit error. Similar results are found when the interfer-

ence signal is pulsed with a 10 percent duty cycle 0.1ρ =  as shown in Figure 2.18. 
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Figure 2.17 RAKE Receiver Performance for 1.0ρ =  and K=0,10, and 100. 

 
 
Figures 2.17 and 2.18 show that there is a diminishing return gained when the 

value of  K increases by a factor of 10 from 10 to 100. As the ratio of K increases, the 

power on the first finger increases and decreases on the second and third fingers. In order 

to compare the 100K =  with results from an AWGN only channel, we must convert the 

results as a function of b jE N  values into one of ( )0b jE N N+ . Since the calculations 

were performed for  0 15bE N = dB, 4 dBb jE N =  converts to ( )0 3.65 dB.b jE N N+ =  
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Figure 2.18 RAKE Receiver Performance for 0.1ρ =  and K=0,10 and 100. 

 

The probability of bit error for 0 3.65 dBbE N =  AWGN only channel and a constraint 

length 9 convolutional code in [22] is slightly lower than the value shown at  

4 dBb jE N =  in Figure 2.17. Since the RAKE receiver is not optimal for a nonfading 

AWGN channel and performance for 100K =  approaches performance for K →∞ , the 

results presented in this dissertation show good agreement with previously published re-

sults. 
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III. NONCOHERENT RAKE RECEIVER PERFORMANCE 
 

 The performance of a coherent RAKE receiver degrades when the pilot tone is re-

ceived with a low SNR, so we now turn our attention to the noncoherent RAKE receiver 

which does not require any knowledge of the received signal phase. In this dissertation, 

only noncoherent BFSK is considered. The transmitted signal for a data bit “0” must be 

orthogonal to the transmitted signal for a data bit “1” just as for a conventional noncoher-

ent signal. However, the transmitted signal must also be orthogonal to delayed versions 

of the transmitted signal when the delay is greater than the RAKE finger spacing for a 

noncoherent RAKE receiver.   

For the noncoherent RAKE receiver, the transmitted signal for a bit “0” is defined 

as 

 ( ) ( ) ( )02 cos ,ca t A c t tω φ= +  (3.1)  

and the transmitted signal for a bit “1” is 

 ( ) ( ) ( )12 cos ,ca t A c t tω δ= +  (3.2) 

where 2 cA  is the unfaded carrier amplitude, ( )c t  is the chipping waveform, which has 

an autocorrelation function defined in (2.5), and φ  and δ  are random starting phases. 

The transmitted frequencies 0ω  and 1ω  are chosen to be orthogonal over the bit duration 

T so that: 

 ( ) ( )0 10
cos cos 0.

T
t t dtω ω =∫  (3.3) 

When this signal is transmitted over the frequency-selective fading channel shown in 

Figure 1.4, the received signal can be expressed as  

 ( ) ( ) ( )
1

2 cos .
l

c i d k d
i

r t A c t iT t iTα ω
=

= − −⎡ ⎤⎣ ⎦∑  (3.4) 

Each of the l components is modeled as a flat fading signal and can have a different fad-

ing coefficients iα . When a bit “0” is transmitted 0kω ω= , and when a bit “1” is trans-

mitted 1kω ω= . The received signal can be recovered by the noncoherent RAKE receiver 

shown in Figure 3.1   
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Figure 3.1 Noncoherent RAKE Receiver. 
The locally generated signals are ( ) ( ) ( )0 02 cosS t c t tω=  and ( ) ( ) ( )1 12 cosS t c t tω= . 

At the output of the mixer on the thj  finger we have 

 ( ) ( ) ( ) ( ) ( )1 0
1

2 cos cos ,
l

c i d k d d d
i

y t A c t iT t iT c t jT t jTα ω ω
=

= − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑  (3.5) 

for the received signal mixed with ( )0S t  and  
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 ( ) ( ) ( ) ( ) ( )2 1
1

2 cos cos ,
l

c i d k d d d
i

y t A c t iT t iT c t jT t jTα ω ω
=

= − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑  (3.6) 

for the received signal mixed with ( )1S t . The integrator then integrates these signals, 

which will eliminate any delayed components of the received signal that do not have the 

same delay as the locally generated chipping waveform ( ) ,c t  since the chipping wave-

form has ideally zero correlation with delayed versions of itself as shown in (2.5). In real-

ity, there are no PN sequences that give zero correlation with delayed versions of them-

selves, but practical PN sequences can be long enough that the correlation is zero for all 

practical purposes. The integrator also removes the double frequency term. Since the 

transmitted signal is orthogonal, in the absence of noise the output of the integrator on the 

signal branch will be c jAα  and the non-signal branch integrator output will be zero. The 

integrator outputs are squared and combined. The results of the correlation of the re-

ceived signal with ( )1S t  are then subtracted from the corresponding correlation with 

( )0S t , and the receiver decides that a bit “0” was transmitted if the result is less than 

zero. Otherwise, the receiver decides a bit “1” was transmitted. 

A.  NONCOHERENT RAKE RECEIVER ANALYSIS WITH PULSE-NOISE 
INTERFERENCE AND RICEAN FADING 

    We will now derive the performance of a noncoherent RAKE receiver for a signal 

transmitted over a Ricean fading channel with pulse-noise interference. Both the RAKE 

receiver optimized for AWGN channels, analyzed in this section, and the maximum-

likelihood RAKE receiver optimized for pulse-noise interference , analyzed in the next 

section, will be investigated. Convolutional coding with both hard and soft decision 

Viterbi decoding will also be considered. 

  We assume without loss of generality that the signal corresponding to bit “0” was 

transmitted. The conditional probability density function of the random variable 1kX  at 

the output of the quadratic detector for the thk  finger of the signal branch given a signal 

amplitude 2 ka  is [17] 
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 ( )
1

2
11

1 02 2 2

221| exp ,
2 2k

k kk k
X k k

k k k

a xx af x a I
σ σ σ

⎛ ⎞⎛ ⎞+
= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (3.7) 

where ( )0I •  represents the modified Bessel function of the first kind and order zero. The 

average received power on the thk  finger is 2
ka . The subscript 1k  is used to identify the 

thk  finger of the signal branch, while the thk  finger of the noise only branch will be la-

beled with the subscript 2k . The fading channel is modeled by assuming ka  to be a Ri-

cean random variable. The probability density function of the Ricean random variable is 

[17] 

 ( )
2 2

02 2 2exp ,
2k

k k k k k
A k

k k k

a a af a Iα α⎛ ⎞ ⎛ ⎞+
= −⎜ ⎟ ⎜ ⎟Ω Ω Ω⎝ ⎠ ⎝ ⎠

 (3.8) 

where 2
kα  is the average power of the direct signal component and 22 kΩ  is the average 

power of the diffuse signal component on the thk  finger. The total received power on the 
thk  finger is 2 22k kα + Ω . The conditioning of 1kX  on ka  is removed by integrating over 

the pdf for ka :            

 ( ) ( ) ( )
1 11 1

0

| .
k k kX k X k k A k kf x f x a f a da

∞

= ∫  (3.9) 

Substituting (3.7) and (3.8) into (3.9), we obtain  

 

( )
1

2 2 2
1

1 2 2 2 2

2 2 2 2
1

0 02 2 2 2
0

1 exp
2 2

22                 exp .
2

k

k k k k
X k

k k k k

k kk k k k k k
k k

k k k k

xf x

a xa a aa I I da

α σ
σ σ

σ α
σ σ

∞

⎛ ⎞Ω +
= −⎜ ⎟Ω Ω⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞Ω +
× − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠⎝ ⎠
∫

 (3.10) 

The above expression can be evaluated using the relationship 

 ( ) ( )0 0 ,I x J jx=  (3.11) 

where 1j = − , and (6.633.4) from [18], which gives 
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 ( ) ( ) ( )
2 2

0 0 0
0

1exp exp .
2 4 2k k k k ka a I a J a da Jβ γ βγα β γ
α α α

∞ ⎛ ⎞− ⎛ ⎞− = ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∫  (3.12) 

Evaluating (3.10) using (3.11) and (3.12), we get 

 ( ) ( )1

2
11

1 02 2 2 22 2

221 exp .
2 22 2k

kk
X k

k k k kk k

xxf x I
αα

σ σσ

⎛ ⎞ ⎛ ⎞+⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟Ω + Ω +Ω + ⎝ ⎠⎝ ⎠
 (3.13) 

The pdf at the output of the summer is then given by the convolution of the pdf 

from all the fingers of the RAKE receiver. In order to avoid doing these convolutions di-

rectly, the Laplace transforms of the pdf from each finger are multiplied together and the 

inverse transform of this product yields the pdf at the output of the summer. The Laplace 

transform of the pdf for 1kX  is obtained from 

 ( ) ( ) ( )
1 1 1 1 1

0

exp .
k kX X k k kF s f x sx dx

∞

= −∫  (3.14) 

Substituting (3.13) into (3.14), we get 

 

( ) ( ) ( )

( ) ( ) ( )

1

2

2 2 2 2

11
1 02 2 2 2

0

1 exp
2 2 2 2

2
               exp exp .

2 2 2

kX
k k k k

kk
k

k k k k

F s

xx sx I

α
σ σ

α
σ σ

∞

⎛ ⎞−⎜ ⎟=
⎜ ⎟Ω + Ω +⎝ ⎠

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟× −
⎜ ⎟ ⎜ ⎟Ω + Ω +⎝ ⎠ ⎝ ⎠

∫
 (3.15) 

By making the change of variables  

 1 ,ky x=  (3.16) 

then 

 
1

1 ,
2 k

dy dx
x

=  (3.17) 

we can evaluate the integral in (3.15) using (6.631.4) from [18]: 

 ( ) ( )
( )

2
1 2

1
0

exp exp .
42

v
v

v vx x J x dx β βα β
αα

∞
+

+

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
∫  (3.18) 



 54

Hence, the Laplace transform of the pdf for the thk  finger of the signal branch can be 

written as 

 ( ) ( ) ( )( )1

2

2 2 2 2

1 2exp ,
1 2 2 1 2 2kX

k k k k

sF s
s s

α
σ σ

⎛ ⎞−⎜ ⎟=
⎜ ⎟+ Ω + + Ω +⎝ ⎠

 (3.19) 

and the Laplace transform at the output of the summer for the signal branch is simply the 

product of the k signal branch fingers 

 ( ) ( )
1 1

1

.
k

L

X X
k

F s F s
=

=∏  (3.20) 

 The pdf for the noise only branch can be found from (3.19) by setting 2 2 0k kα = Ω = : 

 ( )
2

2
2 2 2

1 exp .
2 2k

k
X k

k k

xF x
σ σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (3.21) 

As previously mentioned, the subscript 2k  identifies the thk  finger on the noise only 

branch, i.e., 2 2
0kσ σ=  when only AWGN is present and 2 2 2

0k jσ σ σ= +  when pulse-noise 

interference is present. Using (3.14), we obtain the Laplace transform of (3.26) as 

 ( )2 2

1 .
2 1k

k

F s
sσ

=
+

 (3.22) 

The pdf at the output of the summer on the noise only branch is the inverse Laplace trans-

form of the product of all Laplace transforms for all the fingers at the input of the sum-

mer as  

 ( ) ( )
2 2

1

.
k

L

X X
k

F s F s
=

=∏  (3.23) 

1. Soft Decision Viterbi Decoding 

 The probability of bit error for a system with convolutional coding is upper 

bounded by [9] 

 ,
free

b d d
d d

P B P
∞

=

< ∑  (3.24) 
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where dB  is the total number of nonzero information bits in all weight d paths and dP  is 

the probability of selecting a code sequence that is a Hamming distance d away from the 

correct code sequence. The interleaver randomizes the order of the bits with interference 

at the decoder input, so dP  can be written [9] as 

 ( ) ( )
0

1 ,
d

d ii
d d

i

d
P P i

i
ρ ρ −

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  (3.25) 

where ρ  is the duty cycle of the pulse noise interference, and ( )dP i  is the probability of 

selecting a code sequence a Hamming distance d from the correct code sequence given 

that i of the d receptions experience interference. For a rate ½, constraint length 9 convo-

lutional code, the first three nonzero terms of the series are 12 14 1633 281 2179P P P+ + , 

which are sufficient to accurately compute bP  when bP  < 310− . To calculate ( )dP i  when  

d i−  bits are received with only AWGN and i bits experience interference, we must 

evaluate 

 ( ) ( ) ( )
1

1 1 2 2 2 1
0 0

1 .
x

d X XP i f x f x dx dx
∞ ⎡ ⎤

= − ⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫  (3.26) 

In order to evaluate (3.26), we obtain the required pdfs from 

 ( ) ( ){ }1 1

1
1X Xf x F s−= L  (3.27) 

and 

 ( ) ( ){ }2 2

1
2X Xf x F s−= L  (3.28) 

where 
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and 
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The evaluation of (3.26) requires numerical inversion of (3.29) and (3.30), followed by 

numerical integration of (3.26). The inner integral does not have to be evaluated numeri-

cally since, as is well known [23], 

 ( ) ( )1

2 2
0

.
x F s

f x dx
s

⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭
∫L  (3.31) 

The required inversions are done numerically using the method discussed in [24], which 

inverts the Laplace transform ( )sΦ  at any value of x from 

 ( ) ( ) ( )
1

exp( ) Re 2 1 ,
2

n

n

ax n if x a a
x x

π∞

=

⎡ ⎤⎛ ⎞= Φ + − Φ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  (3.32) 

where a is a number greater than the real part of any singularity of ( )sΦ . The trapezoidal 

rule is then used to integrate the numerically inverted data points to obtain ( )dP i . These 

numerical inversions must be done d l+  times. For example, the 12P  term includes the 

case where no soft decision outputs experience interference, where one experiences inter-

ference, where two experience interference, and so on to the case where all twelve out-

puts experience interference. These results are then substituted into (3.25) to obtain dP . 

Figure 3.2 shows the probability of bit error for a three finger RAKE optimized for 

the AWGN channel with rate ½, constraint length 9, Viterbi soft decision Viterbi decod-

ing when 0 15bE N = dB, the ratio of direct to diffuse power is 10 dB and the interference 

signal has a one percent duty cycle ( )0.01ρ = , ten percent duty cycle ( )0.1ρ = , and a 

interference signal that is on all the time ( )1.0ρ = . Results show that the probability of 

bit error increases when the interference duty cycle ρ  is decreased. This is due to the fact 

that the interference power increases as the duty cycle decreases, since 2
j j bN rTσ =  

where jN  is the interference noise power spectral density and bT  is the bit duration. Soft 

decision Viterbi decoding uses a sequence of soft decision receiver outputs to make a bit 

decision. If any of these soft decision receiver outputs have a large variance, then the 

probability of bit error will significantly increase. 
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Figure 3.2 Noncoherent RAKE Receiver Optimized for the AWGN Channel Perform-

ance with Rate ½, Constraint Length 9, Viterbi Soft Decision Viterbi Decoding as a 
Function of Duty Cycle .ρ  

 

The bits with interference will also affect future bit decisions, which will cause additional 

decoding errors. Comparing Figure 3.2 with Figure 2.10, shows that the coherent RAKE 

receiver performs better for low values of b jE N  but that the noncoherent RAKE re-

ceiver performs below the irreducible error floor caused by phase noise in the coherent 

RAKE receiver at high values of  b jE N . The noncoherent combining losses cause the 

noncoherent RAKE receiver to have catastrophic performance for b jE N  below 5 dB 

when the interference signal is on all the time and approximately for b jE N  below 26 dB 

when the interference signal had a one percent duty cycle ( 0.01)ρ = . It should also be 
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noted that pulsing the interference signal increased the probability of bit error for both the 

coherent and noncoherent RAKE receivers designed for AWGN channels. Therefore, we 

can conclude that pulse-noise interference is a very effective interference strategy against 

a RAKE receiver designed for AWGN channels with soft decision Viterbi decoding. As a 

result, pulse-noise interference will be very effective against commercial systems since 

all commercial RAKE receivers are designed in this manner. 

2. Hard Decision Decoding 

If hard decision Viterbi decoding is utilized, dP  in (3.24) is [9] 

 ( )1
1

2

,d iid d
P p pd idi

−
= ⋅ ⋅ −∑

+=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.33) 

when d is odd, and  
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( )

2 221 12
2

1
12

       ,

d dd
P p pd d

d d d iip p
idi

= ⋅ ⋅ ⋅ −

−
⋅ ⋅ −∑

= +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 (3.34) 

 when d is even. In  (3.33) and (3.34), the channel transition probability p is 

 ( ) ( )( )2 2 2 2 2
0 0| 1 | ,b j bp P Pρ σ σ σ ρ σ σ= = + + − =  (3.35) 

where ρ  is the duty cycle of the pulse-noise interference, ( )2 2 2
0|b jP σ σ σ= +  is the 

probability of bit error when a single bit experiences interference, and ( )2 2
0|bP σ σ=  is 

the probability of bit error when a single bit is transmitted with only AWGN present. 

Figure 3.3 shows the probability of bit error for a three-finger RAKE with rate ½ 

constraint length 9 Viterbi hard decision decoding when 0 15bE N = dB, the ratio of di-

rect to diffuse power is 10 dB and the interference signal has a one percent duty cycle 

( )0.01ρ = , ten percent duty cycle ( )0.1ρ = , and a interference signal that is on all the 

time ( )1.0ρ = . Soft decision Viterbi decoding uses a sequence of soft decision receiver 



 59

0 5 10 15 20 25 30 35 40 45 50
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Eb/Nj

P
b

ρ=1.0
ρ=0.1
ρ=0.01

 
Figure 3.3 Noncoherent RAKE Receiver with Rate ½ Constraint Length 9 Viterbi 

Hard Decision Decoding. 
 

outputs to make bit decisions. Note that interference one of these soft decision receiver 

outputs may cause the current bit decision to be incorrect as well as several of the follow-

ing bits using a previous soft decision receiver output with interference. Hard decision 

Viterbi decoding makes hard decisions at the receiver and does not provide an estimate of 

the confidence in the bit decision. As a result, hard decision Viterbi decoding treats all bit 

errors equally and does not allow a single bit to with interference dominate the decoding 

decision. Further note that the hard decision receiver outputs have few errors when the 

pulse-noise interference duty cycle decreases. Hence, hard decision Viterbi decoding can 

provide bit error probabilities of 610−  or lower when the pulse-noise interference duty 

cycle is one percent, which is a significant improvement over the soft decision Viterbi 

decoding that required b jE N ≈ 30 dB to achieve this bit error probability. 
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B. MAXIMUM-LIKELIHOOD RECEIVER FOR NONCOHERENT 
CHANNELS WITH GAUSSIAN NOISE, PULSE-NOISE 
INTERFERENCE, AND SOFT DECISION VITERBI DECODING 
The maximum-likelihood receiver performance for a noncoherent RAKE receiver 

with AWGN, pulse-noise interference, and soft decision Viterbi decoding is derived in 

this section. Since dP  in (3.24) is equivalent to a thd  order diversity for soft decision 

Viterbi decoding [25], the analysis in this section can be applied to a wide range of sys-

tems that use diversity as well as error correction coding. The performance of the coher-

ent RAKE receiver analyzed previously dramatically improved when it was designed for 

maximum-likelihood performance with AWGN and pulse-noise interference. As previ-

ously mentioned, the pulse-noise interference considered will have a duty cycle ρ  and 

interference power spectral density jN ρ  when the interference signal is on. Since the 

interference signal is modeled as additive Gaussian noise, the noise variance is equal to 
2
0σ  when there is only AWGN present and 2 2

0 jσ σ+  when the interference is on. Assum-

ing that the diversity receptions are independent, a reasonable assumption for a properly 

designed system, the joint density function is the product of the marginal density func-

tions given in (3.7). We obtain the joint pdf for the “0” bit when i  diversity receptions 

experience interference and d i−  diversity receptions have only Gaussian noise as 
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where ( )0m
y t  is a sequence of  m  diversity receptions of a bit “0” and 2

cα  is the average 

received power for the thc  RAKE finger. The joint pdf for a bit “1” is given by 
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where ( )1m
y t  is a sequence of m diversity receptions for a bit “1”. The likelihood ratio is 

given by 

 ( )
( )
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f y
f y

>
<

 (3.38) 

 Substituting (3.36) and (3.37) into (3.38), we get 

 

( )
( )

( ) ( ) ( )
( )

( )
1

0

12
1 02 2 2

1 10 0 0

12
1 0 2 22 2 2 2

1 1 00 0

02 2
0 0

21 1exp 2
2 2

21 1exp 2
2 2

1 1exp 2
2 2

m

m

m

m

S

m
S

d i d id i
c

c
m m

i
dd

c
c

m d i m d i jj j

d i

y t
y t I

y t
y t I

y t

α
α

σ σ σ

α
α

σ σσ σ σ σ

σ σ

−
−−

= −

= − + = − +

−

>
<

⎛ ⎞⎛ ⎞ ⎡ ⎤− ⎜ ⎟+ ×⎜ ⎟ ⎢ ⎥ ⎜ ⎟⎝ ⎠ ⎣ ⎦ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎡ ⎤− ⎜ ⎟⎜ ⎟ ⎢ ⎥× + ×
⎜ ⎟ +⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠

⎛ ⎞ −
+⎜ ⎟

⎝ ⎠

∑ ∏

∑ ∏

( )

( ) ( ) ( )
( )

02
0 2

1 1 0

02
0 0 2 22 2 2 2

1 1 00 0

2

21 1  exp 2 .
2 2

m

m

m

d id i
c

c
m m

i
dd

c
c

m d i m d i jj j

y t
I

y t
y t I

α
α

σ

α
α

σ σσ σ σ σ

−−

= =

= − + = − +

⎛ ⎞⎡ ⎤ ⎜ ⎟×⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎡ ⎤− ⎜ ⎟⎜ ⎟ ⎢ ⎥× + ×
⎜ ⎟ +⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠

∑ ∏

∑ ∏

(3.39) 

Taking the natural log and rearranging terms, we get 
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Note that cα  on the ( )1y m  branch will be the same as cα  on the ( )0y m  branch since it 

was assumed that each RAKE finger will have flat fading. Hence, the ( )0ln I •⎡ ⎤⎣ ⎦  term 
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adds the same value on both sides of (3.40), and we can further simplify the maximum-

likelihood receiver to 
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which shows that the output of each quadratic detector should be weighted by the inverse 

of the received bit variance 2 2
0 jσ σ+  or 2

0σ  depending on whether the bit experiences in-

terference or not, respectively. A diagram of the maximum-likelihood combiner for 

AWGN and pulse- noise interference is shown in Figure 3.4, where 2 2
01 1σ σ=  when 

only AWGN is present and ( )2 2 2
01 1 jσ σ σ= +  when the received bit experiences inter-

ference. A maximum-likelihood noncoherent RAKE receiver designed for AWGN and 

                                        ( )1y m

                                                         2

1
σ

                                         ( )0y m

Quadratic
Detector
( )

Quadratic
Detector

Decision

 
Figure 3.4 Maximum-Likelihood Combiner for AWGN and Pulse-Noise Interfer-

ence. 
 

pulse-noise interference is shown in Figure 3.5. Equation (3.41) shows that the maxi-

mum-likelihood noncoherent RAKE receiver scales the received bit by the inverse of the 

received bit variance 2 2
0 jσ σ+  or 2

0σ  depending on whether the bit experiences interfer-

ence or not, respectively. We first examine the effect of this scaling on the signal branch 

in order to analyze the maximum-likelihood noncoherent RAKE receiver. We define 
2

1 1k kZ X σ= , which is the random variable on the thk  finger of the signal branch. 
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Figure 3.5 Maximum-Likelihood RAKE Receiver for AWGN and Pulse-Noise Inter-
ference. 

 

To find the pdf for 1kZ , we make the transformation 2
1 1k kZ X σ= , and  from (3.7) we 

get 
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where ( )0I •  represents the modified Bessel function of the first kind and order zero, ka  

is assumed to be a Ricean random variable defined in (3.14), 2 2
0kσ σ=  when only AWGN 

is present and 2 2 2
0k jσ σ σ= +  when pulse-noise interference is present. We eliminate the 

dependence on ka  by substituting (3.42) and (3.9) into (3.10), leading to 
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The integral can be evaluated using (3.11) and (6.633.4) from [23], which yields 
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Making the substitutions 
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which is (5) in [26]. To calculate the Laplace transform of (3.45) we substitute (3.45) into 

(3.14) which yields 
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By making the transformation of variables 1ku z=  and 1 12k kdu dz z= , we get 
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which can be evaluated using (3.11) and (6.631.4) from [23] : 
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Performing the integration and simplifying, we get 
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The Laplace transform at the output of the signal branch summer is the product of the L 

signal branch fingers, so that 
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The pdf for the noise-only branch of the maximum-likelihood RAKE receiver can 

be found from (3.44) by setting the received direct signal power to zero ( )2 0α =  and the 

received diffuse signal power to zero ( )22 0Ω = . Performing this substitution, we get 
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where 2kz  represents the random variable on the thk  finger of the noise-only branch. The 

Laplace transform for the noise-only branch is calculated by substituting (3.51) into 

(3.14), which yields 
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Since the maximum-likelihood RAKE receiver scales the received signal by the inverse of 

the variance 2 2
0 jσ σ+  or 2

0σ  depending on whether the bit experiences interference or not, 

respectively, the Laplace transform of the pdf for the noise-only RAKE fingers does not 

depend on the received signal variance ( )2
kσ . The Laplace transform of the pdf at the 

output of the summer is the product of  the L noise-only fingers: 
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The Laplace transform at the output of the signal branch summer and the noise-

only branch summer must be inverted and substituted into (3.26) to calculate the bit error 

probability. As an example, we use a three finger RAKE with 0 15bE N = dB, and a 10-

dB ratio of direct-to-diffuse power to calculate the performance of the maximum-

likelihood noncoherent RAKE receiver against a interference signal with one percent duty 

cycle ( )0.01ρ = , ten percent duty cycle ( )0.1ρ = , and a interference signal that is on all 

the time ( )1.0ρ = . Results presented in Figure 3.6 show that the maximum-likelihood 

noncoherent RAKE receiver with rate ½, constraint length 9 soft decision Viterbi decod-

ing improves performance when pulse-noise interference is present. In fact, the worst 

case interference at low SNR values was achieved when the interference was on all the 

time, which indicates that pulse-noise interference is not effective against a maximum-

likelihood receiver designed for both AWGN and pulse-noise interference. The perform-

ance of the maximum-likelihood noncoherent RAKE receiver is significantly better than 

the performance of the standard noncoherent RAKE receiver, which has catastrophic per-

formance for b jE N below 25 dB when the interference signal has a one percent duty 

cycle. The maximum-likelihood noncoherent RAKE receiver has a probability of bit error 

at or below 2010−  for all values of b jE N  for this case. In summary, a noncoherent RAKE 

receiver designed for AWGN performs worse as the pulse-noise interference duty cycle 

decreases, whereas the opposite is true for the maximum-likelihood noncoherent RAKE 

receiver. 

Comparing the maximum-likelihood coherent RAKE receiver performance shown 

in Figure 2.11 with that of the maximum-likelihood noncoherent RAKE receiver, we see 

that the noncoherent case does not have an irreducible phase noise error floor and is only 

limited by AWGN noise. When the interference signal is on all the time or has a ten per-

cent duty cycle, the maximum-likelihood coherent RAKE receiver performs better for low 
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Figure 3.6 Maximum-Likelihood Noncoherent RAKE Receiver with Rate ½ Con-

straint Length 9 Viterbi Soft Decision Viterbi Decoding. 
 

values of b jE N ; however, when the interference signal has a one percent duty cycle the 

maximum-likelihood noncoherent RAKE receiver performs better for all values of  

b jE N  because the maximum-likelihood coherent RAKE receiver has an irreducible 

phase noise error floor. In both cases the worst performance occurs when the interference 

signal is on all the time. In conclusion, the maximum-likelihood RAKE designed for 

AWGN and pulse-noise interference provides dramatically better performance in the 

presence of pulse-noise interference than a commercial RAKE receiver designed for 

AWGN channels.  
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IV. CONCLUSIONS  
 

A. RESEARCH SUMMARY  

The performance of a direct sequence spread spectrum (DSSS) signal transmitted 

over a Ricean frequency-selective, slowly fading channel with pule-noise interference, 

phase noise and AWGN has been analyzed. Both coherent and noncoherent modulation 

with an exponential multipath intensity profile were considered. These signals were com-

pared using a direct to diffuse power ratio of ten ( )10K = , which represents moderate 

fading. The performance of conventional RAKE receiver optimized only for AWGN was 

compared with the maximum-likelihood RAKE receiver optimized for pulse-noise inter-

ference and AWGN. A rate ½ , constraint length 9 convolutional code was also consid-

ered with both hard and soft decision Viterbi decoding. 

Analysis of the coherent RAKE receiver with soft decision Viterbi decoding dem-

onstrated how critically important it is to have a strong pilot tone. In Figure 2.15 the per-

formance for 10-dB loop SNR and 15-dB loop SNR does not provide reliable communi-

cation. In fact, the performance for 10-dB loop SNR produced a catastrophic 50 percent 

error rate and 15-dB loop SNR produced a 310−  error rate. In order to avoid these disas-

trous error rates, commercial wireless systems dedicate as much as 20 percent of the total 

power to the pilot tone. The 20-dB loop SNR performance had an irreducible phase noise 

error floor slightly above 1010− , which is more than sufficient for wireless communica-

tion systems. Fiber optic systems which operate at error rates of approximately 1510−  

would require a loop SNR greater than 15 dB.  

  Commercial coherent RAKE receivers designed for AWGN with soft decision 

Viterbi decoding perform poorly in the presence of pulse-noise interference. Results pre-

sented in Figure 2.10 demonstrate that the commercial coherent RAKE receiver performs 

worse as the duty cycle of the pulse-noise interference signal decreases. A soft decision 

receiver provides estimates of whether the received signal is a bit”0” or a bit “1” and an 

estimate of  the confidence in this decision. When a strong interference signal is present, 
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the soft decision receiver can produce a bit error with a high confidence of being the cor-

rect estimate. The convolutional decoder will produce a series of bit errors when the 

minimum weight path through the trellis includes a bit error with a high confidence esti-

mate. Since the peak interference power increases as the pulse-noise interference duty 

cycle decreases, it is logical to expect the bit error rate to increase as the duty cycle of the 

pulse-noise interference duty cycle decreases. The maximum-likelihood coherent RAKE 

receiver optimized for pulse-noise interference and AWGN was derived and the analysis 

proved that measuring the variance of the received signal on a bit-by-bit basis and scaling 

each bit by the inverse of the variance is optimal according to the maximum-likelihood 

criteria. The efficacy of this receiver was demonstrated by the fact that it reduced the 

probability of bit error down to the irreducible phase noise error floor when pulse-noise 

interference was present. Results were derived analytically up to the point where no ana-

lytical solution to the required inverse Laplace transform existed, so numerical techniques 

were used both for inversion and integration to calculate the probability of bit error. Ana-

lytical results for the RAKE receiver designed only for AWGN were verified by simula-

tion for the case when the interference signal was on all the time and the simulation re-

sults were within 1 dB of the analytical results. The maximum-likelihood coherent RAKE 

receiver designed for AWGN and pulse-noise interference was also simulated for 10-dB 

and 15-dB loop SNR. The simulated probability of bit error for 10-dB and 15-dB loop 

SNR were below the analytic values because the union bound is loose when phase noise 

dominates system performance. 

Results showed that the RAKE receiver designed for AWGN only and hard deci-

sion Viterbi decoding  performed better when the duty cycle of the interference signal 

was reduced. A hard decision receiver only provides an estimate of whether the received 

data is a bit “0” or a bit “1” and does not provide an estimate of  the received bit decision 

confidence. As a result, a bit that experiences interference will not dominate the decoding 

decision since the decoder does not use estimates of the received bit confidence. Decreas-

ing the duty cycle of the interference signal also decreases the number of  bits that ex-

perience interference. With hard decision Viterbi decoding, fewer bits that experience 

interference at the input to the decoder produce fewer errors at the output of the decoder. 
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In Figure 2.9, when the duty cycle of the interference signal was one percent, the prob-

ability of bit error was approximately 1010−  or lower for all values of  b jE N . This is 

significantly lower than the probability of bit error for the same case with soft decision 

Viterbi decoding, which produced a catastrophic 50 percent error rate when b jE N  was 

less than 3 dB. From Figure 2.10, soft decision Viterbi decoding required 15b jE N =  dB 

to reach a 1010−  probability of bit error. Hence, hard decision Viterbi decoding is a good 

method to limit the effect of pulse-noise interference. 

In addition, hard decision Viterbi decoding also limits the effects of phase noise. 

The results showed that soft decision Viterbi decoding can not provide reliable communi-

cation for either 10-dB or 15-dB loop SNR. However, hard decision Viterbi decoding can 

reduce the probability of bit error to 610−  for 25 dB or greater b jE N  with a loop SNR of 

10 dB, and the 15-dB loop SNR case only required 11 dB b jE N . This shows that inter-

fering with the pilot tone would not cause a catastrophic error rate when the pilot tone 

and data are transmitted on different frequencies and hard decision convolutional coding 

is used. 

Changing the RAKE finger spacing in order to improve the diversity performance 

by reducing the difference in the signal power on each finger was investigated. Since the 

analysis assumed a three-finger RAKE, when the finger spacing was reduced to decrease 

the difference in finger SNR, the total received power also decreased. Repeated analysis 

for hard decision Viterbi decoding demonstrated that recovering 92 percent of the re-

ceived power produced the lowest probability of bit error. Decreasing the finger spacing 

further to provide better diversity performance did not fully compensate for the additional 

received signal power reduction. When soft decision Viterbi decoding was analyzed with 

a RAKE finger spacing that recovered 92 percent of the received signal power, the prob-

ability of bit error was approximately the same as the RAKE receiver that recovered 99.9 

percent of the received signal power and each finger is 10 dB below the previous one. It 

should be noted that this analysis is specific to a three-finger RAKE receiver and it is pos-

sible that a RAKE receiver with four fingers or more could benefit by adapting the finger 
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spacing. Additionally, a 15-dB 0bE N  was assumed in the analysis. Adapting the RAKE 

finger spacing could be more effective for higher levels of AWGN. 

Noncoherent RAKE receivers designed for AWGN with soft decision Viterbi de-

coding perform miserably in the presence of pulse-noise interference. Results presented 

in Figure 3.4 demonstrate that the noncoherent RAKE receiver performance degrades as 

the duty cycle of the pulse-noise interference signal decreases. When the pulse-noise in-

terference signal uses a one percent duty cycle, the noncoherent RAKE receiver with soft 

decision Viterbi decoding has catastrophic performance for values of  b jE N  below 26 

dB. By comparison, at 26-dB b jE N  the coherent RAKE receiver designed for AWGN 

had a probability of bit error slightly above 1010−  for a interference duty cycle of one per-

cent when the pilot tone was received with a 20-dB loop SNR. A strong pilot tone is criti-

cal for coherent systems. The noncoherent RAKE receiver performed better than the co-

herent RAKE receiver when the pilot tone was received with a 10-dB loop SNR, which 

had a 50 percent error rate for all values of  b jE N . Unlike the coherent RAKE receivers, 

the noncoherent RAKE receiver does not have an irreducible probability of bit error floor. 

Since noncoherent receivers demodulate the received bits without using a pilot tone, they 

are immune to random phase fluctuations that cause problems for coherent receivers. 

Hard decision Viterbi decoding also limits the effect of pulse-noise interference 

on a noncoherent RAKE receiver designed for AWGN. When soft decision Viterbi decod-

ing is used, the probability of bit error increases as the duty cycle of the interference sig-

nal decreases; however, the opposite is true for hard decision Viterbi decoding. Since a 

hard decision receiver does not provide an estimate of the confidence of the bit decision, 

the decoder will not have the problem of an erroneous bit decision with a high confidence 

estimate of being correct. The coherent RAKE receiver designed for AWGN with hard 

decision Viterbi decoding and 20-dB loop SNR performed better than the noncoherent 

RAKE receiver for all values of  b jE N . A strong received pilot tone is necessary for the 

coherent RAKE receiver to outperform the noncoherent RAKE. 
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The maximum-likelihood noncoherent RAKE receiver for pulse-noise interference 

and AWGN was also derived. Like the coherent case, measuring the variance of the re-

ceived signal on a bit-by-bit basis and scaling each bit by the inverse of the variance is 

optimal according to the maximum-likelihood criteria. Our analysis demonstrated that, 

when the interference signal has a 10 percent duty cycle, this receiver has a probability of 

bit error below 1010−  for all values of b jE N , and for a one percent duty cycle the prob-

ability of bit error was below 2010−  for all values of b jE N . Since the maximum-

likelihood noncoherent RAKE receiver for pulse-noise interference and AWGN effec-

tively mitigates pulse-noise interference, the interference signal would have to transmit 

continuously; however, for values of b jE N  above 10 dB the probability of bit error is 

below 710− . Therefore, the maximum-likelihood noncoherent RAKE receiver for pulse-

noise interference and AWGN is highly resistant to interference. 

 In summary, a RAKE receiver designed for AWGN does not perform well in the 

presence of pulse-noise interference. The maximum-likelihood RAKE receiver designed 

for AWGN and pulse noise interference mitigates the effect of pulse-noise interference 

for both coherent and noncoherent RAKE receivers. This demonstrates how important it 

is to design the receiver for the intended operational environment. It is also critically im-

portant for a coherent RAKE receiver to have a strong pilot tone. Random fluctuations of 

the pilot tone caused by high levels of AWGN have a devastating effect on soft decision 

Viterbi decoding. Hard decision Viterbi decoding can limit the impact of phase noise, but 

soft decision Viterbi decoding performs better than hard decision Viterbi decoding when 

the pilot tone is received with high SNR. 

 

B. SUGGESTIONS FOR FURTHER RESEARCH 

It was recently shown that the multipath amplitude distribution for indoor chan-

nels is well modeled by the Nakagami-m distribution [27]. Since direct sequence spread 

spectrum with binary phase-shift keying or quadrature phase-shift keying is often used  
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for indoor channels, it would be interesting to analyze the coherent and noncoherent 

RAKE receiver performance when the signal is transmitted over a  Nakagami fading 

channel. 

This dissertation assumed a rate ½  convolutional code that is one of two convolu-

tional codes used in IS95 cellular communication systems. For a noisy reverse channel, 

IS95 systems use a rate 1/3 code, while the rate ½  convolutional code considered in this 

dissertation is specified for the forward channel. The interested reader can repeat this re-

search for a rate 1/3, constraint length 9 convolutional code. The new 3G standards spec-

ify both a convolutional code and a turbo code. It would be very intriguing to compare 

coherent RAKE receivers with convolutional coding and turbo coding for an AWGN 

channel with pulse-noise interference. 

The noncoherent RAKE receiver in this dissertation used binary frequency-shift 

keying (FSK). In [14] it was shown that a differential phase shift keyed (DPSK) signal 

can be represented as an orthogonal signal over a period of two bits. Thus DPSK typi-

cally has a 3-dB advantage over FSK for noncoherent communications. The noncoherent 

RAKE receiver, however, must be uncorrelated from finger to finger, and in [9] it is 

shown that a noncoherent RAKE receiver using DPSK modulation would require two 

chips between fingers instead of the one chip between fingers that FSK requires. It is not 

intuitively obvious that using DPSK modulation instead of FSK modulation would im-

prove the performance of the noncoherent RAKE receiver, since the DPSK modulation 

would require the noncoherent RAKE receiver to operate at twice the chipping rate of the 

noncoherent RAKE receiver with FSK modulation for the same channel. 
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APPENDIX A  
 

The Gauss-Chebyshev quadrature method given in (2.59) can be used as a quick 

iterative technique to calculate the Q function. Mathematically, the Q function can be ex-

pressed as 
2

21( ) e .
2

u

x

Q x du
π

∞
−⎛ ⎞= ⎜ ⎟

⎝ ⎠∫  This integral of the Gaussian pdf is used to determine 

the probability of bit error for BPSK signals transmitted over an AWGN channel. While 

no closed form solution exists, the Q function has been tabulated for various values of x. 

We can calculate the value for Q(2) by substituting –2 for m and 1 for 2σ  in (2.46), 

which is the Laplace transform of the Gaussian pdf. The Gauss-Chebyshev quadrature 

method can now be used to invert the Laplace transform and integrate it from zero to in-

finity. Since we chose –2 for the mean value, the result should be the same as Q(2). The 

following MATLAB code implements the Gauss-Chebyshev quadrature method: 

 

v=200; 

i=sqrt(-1); 

sum=0; 

c=2.5; 

for k=1:(v/2) 

    tk=tan((((2*k)-1)*pi)/(2*v)); 

    sum=sum+real(LAP(c+(i*c*tk)))+(tk*imag(LAP(c+i*c*tk))); 

end 

res=sum/v; 

 

function[y]=LAP(s) 

y=exp(-2*s+(0.5*s^2)); 

 

When the code is run the result is 0.0228, which is the same value given for Q(2) in [14]. 

 In this dissertation, the Laplace transforms that were inverted required choosing 

different values for c as the signal-to-noise ratio changed. In general, small values of c 
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were used for low signal-to-noise ratios and larger values were chosen for higher signal-

to-noise ratios. The following MATLAB code was used for the coherent RAKE receiver 

optimized for AWGN with 1ρ = : 

 

d=2*pi*besseli(0,31.623); 

v=200; 

i=sqrt(-1); 

for p=1:41 

    ebnj=(10^(.1*(p-1))); 

    nj=1.585/ebnj; 

    sum=0; 

    for k=1:v/2 

        tk=tan((2*k-1)*pi/(2*v)); 

        integ=0; 

        for l=1:99 

            c=.05; 

             if p>2 

                 c=0.1; 

             end 

             if p>8 

                 c=0.5; 

             end 

             if p>25 

                c=1.88; 

            end 

             

            a(l)=EX(c+(i*c*tk),((l*0.01*pi)-pi),nj); 

        end 

        for m=1:98 

            g(m)=(a(m)+a(m+1))/2; 
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            n=cos((((m+m+1)/2)*0.01*pi)-pi); 

            z(m)=0.02*pi*g(m)*(exp(31.623*n))/d; 

            integ=integ+z(m); 

        end 

        sum=sum+real(integ)+tk*imag(integ); 

    end 

    res(p)=sum/v; 

end 

 

function[y]=F(s,p,ej) 

No=.1; 

Nj=.1+((2*ej)/1); 

K=10; 

g=1/22; 

B=2*1.585*(cos(p)^2)*(1-((s/2)*No))*s; 

B2=2*1.585*(cos(p)^2)*(1-((s/2)*Nj))*s; 

y=((((exp(-2*K*0.9*B2*g/(1+2*0.9*B2*g)))/(1+2*g*0.9*B2))*((exp(-

2*K*0.09*B2*g/(1+2*0.09*B2*g)))/(1+2*g*0.09*B2))*((exp(-

2*K*0.009*B2*g/(1+2*0.009*B2*g)))/(1+2*0.009*B2*g)))^12)*((((exp(-

2*K*0.9*B*g/(1+2*0.9*B*g)))/(1+2*g*0.9*B))*((exp(-

2*K*0.09*B*g/(1+2*0.09*B*g)))/(1+2*g*0.09*B))*((exp(-

2*K*0.009*B*g/(1+2*0.009*B*g)))/(1+2*0.009*B*g)))^0); 

 

This calculates the 12P  term. To calculate 14P  we change the function F as shown in the 

following: 

 

function[y]=F(s,p,ej) 

No=.1; 

Nj=.1+((2*ej)/1); 

K=10; 
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g=1/22; 

B=2*1.585*(cos(p)^2)*(1-((s/2)*No))*s; 

B2=2*1.585*(cos(p)^2)*(1-((s/2)*Nj))*s; 

y=((((exp(-2*K*0.9*B2*g/(1+2*0.9*B2*g)))/(1+2*g*0.9*B2))*((exp(-

2*K*0.09*B2*g/(1+2*0.09*B2*g)))/(1+2*g*0.09*B2))*((exp(-

2*K*0.009*B2*g/(1+2*0.009*B2*g)))/(1+2*0.009*B2*g)))^14)*((((exp(-

2*K*0.9*B*g/(1+2*0.9*B*g)))/(1+2*g*0.9*B))*((exp(-

2*K*0.09*B*g/(1+2*0.09*B*g)))/(1+2*g*0.09*B))*((exp(-

2*K*0.009*B*g/(1+2*0.009*B*g)))/(1+2*0.009*B*g)))^0); 

 

Next, 16P  can be calculated using the following function F: 

 

 function[y]=F(s,p,ej) 

No=.1; 

Nj=.1+((2*ej)/1); 

K=10; 

g=1/22; 

B=2*1.585*(cos(p)^2)*(1-((s/2)*No))*s; 

B2=2*1.585*(cos(p)^2)*(1-((s/2)*Nj))*s; 

y=((((exp(-2*K*0.9*B2*g/(1+2*0.9*B2*g)))/(1+2*g*0.9*B2))*((exp(-

2*K*0.09*B2*g/(1+2*0.09*B2*g)))/(1+2*g*0.09*B2))*((exp(-

2*K*0.009*B2*g/(1+2*0.009*B2*g)))/(1+2*0.009*B2*g)))^16)*((((exp(-

2*K*0.9*B*g/(1+2*0.9*B*g)))/(1+2*g*0.9*B))*((exp(-

2*K*0.09*B*g/(1+2*0.09*B*g)))/(1+2*g*0.09*B))*((exp(-

2*K*0.009*B*g/(1+2*0.009*B*g)))/(1+2*0.009*B*g)))^0); 

 

Finally, the probability of bit error can be calculated from 

( ) ( ) ( )12 14 1633 281 2179 .bP P P P= + +  
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APPENDIX B 
 

The numerical Laplace transform inverse given in (3.32) can be implemented as 

shown below. This example inverts the Laplace transform ( )22 1s s + , which has a time 

domain inverse ( ) ( )2 sint t . When 2t π= , the time domain function has a value of  

0.2777, which is the same result we get using the following MATLAB code to invert the 

Laplace transform at the point 2t π= : 

 

i=sqrt(-1); 

v=1000; 

t=pi/4; 

a=7/t; 

inside=0; 

for k=1:v 

    c=a+(k*pi*i/t); 

    if rem(k,2) ==  0 

        inside=inside+(real(w(c))); 

    else 

        inside=inside+(real((-1)*(w(c)))); 

    end 

end 

tmp=real(w(a))+(2*inside); 

tmp2=(exp(a*t)/(2*t)); 

tmp3=tmp2*tmp; 

 

function[y]=w(s) 

y=s/((s^2+1)^2); 

 
The numerical Laplace transform inversions performed for this dissertation, required the 

constant a to be 11/t instead of 7/t as shown in the previous example. The following code 
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was used to invert the Laplace transforms for the noncoherent RAKE receiver designed 

for AWGN with rate ½, constraint length 9 convolutional coding and Viterbi soft deci-

sion decoding: 

i=sqrt(-1); 

v=2000; 

for p=1:40 

    ebnj=(10^(.1*(p-1))); 

    nj=1+(31.623/(0.1*ebnj)); 

    for j=1:200 

        t=j*6.0*(nj/31.623); 

        a=11/t; 

        inside=0; 

        for k=1:v 

            c=a+(k*pi*i/t); 

            if rem(k,2)==0 

                inside = inside+(real(w(c,nj))); 

            else 

                inside = inside+(real((-1)*w(c,nj))); 

            end 

        end 

        tmp=real(w(a,nj))+(2*inside); 

        tmp2=(exp(a*t)/(2*t)); 

        res(j)=tmp2*tmp; 

     end; 

     for zz=1:200 

         if res(zz)<0; 

             res(zz)=0; 

         end 

     end 

     sum=0; 
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     for m=1:199 

         int1=(res(m)+res(m+1))/2; 

         int2=int1*6.0*(nj/31.623); 

         sum=sum+int2; 

     end 

     endres(p)=sum; 

 end 

 For the 1ρ =  case, we can now use the following for the function w to calculate the 12P  

term: 

function[y]=w(s,ej) 

sig1=0.9*31.623*1/22; 

sig2=0.09*31.623*1/22; 

sig3=0.009*31.623*1/22; 

alpha1=0.9*31.623*20/22; 

alpha2=0.09*31.623*20/22; 

alpha3=0.009*31.623*20/22; 

A=(1./((2.*ej.*s)+1)).^12; 

B=(1./((4.*s)+1)).^0; 

C=((1./(2.*s.*(2.*sig1+ej))).*(exp((-

2.*s.*alpha1)./(1+(2.*s.*(2.*sig1+ej))))).*(1./(2.*s.*(2.*sig2+ej))).*(exp((-

2.*s.*alpha2)./(1+(2.*s.*(2.*sig2+ej))))).*(1./(2.*s.*(2.*sig3+ej))).*(exp((-

2.*s.*alpha3)./(1+(2.*s.*(2.*sig3+ej)))))).^0; 

D=((1./(1+2.*s.*(2.*sig1+1))).*(exp((-

2.*s.*alpha1)./(1+(2.*s.*(2.*sig1+1))))).*(1./(2.*s.*(2.*sig2+1))).*(exp((-

2.*s.*alpha2)./(1+(2.*s.*(2.*sig2+1))))).*(1./(2.*s.*(2.*sig3+1))).*(exp((-

2.*s.*alpha3)./(1+(2.*s.*(2.*sig3+1)))))).^12; 

y=(C.*D).*(1-((1./s).*(A.*B))); 

  

The 14P  value can now be calculated by using the following for the function w: 

function[y]=w(s,ej) 



 82

sig1=0.9*31.623*1/22; 

sig2=0.09*31.623*1/22; 

sig3=0.009*31.623*1/22; 

alpha1=0.9*31.623*20/22; 

alpha2=0.09*31.623*20/22; 

alpha3=0.009*31.623*20/22; 

A=(1./((2.*ej.*s)+1)).^14; 

B=(1./((4.*s)+1)).^0; 

C=((1./(2.*s.*(2.*sig1+ej))).*(exp((-

2.*s.*alpha1)./(1+(2.*s.*(2.*sig1+ej))))).*(1./(2.*s.*(2.*sig2+ej))).*(exp((-

2.*s.*alpha2)./(1+(2.*s.*(2.*sig2+ej))))).*(1./(2.*s.*(2.*sig3+ej))).*(exp((-

2.*s.*alpha3)./(1+(2.*s.*(2.*sig3+ej)))))).^0; 

D=((1./(1+2.*s.*(2.*sig1+1))).*(exp((-

2.*s.*alpha1)./(1+(2.*s.*(2.*sig1+1))))).*(1./(2.*s.*(2.*sig2+1))).*(exp((-

2.*s.*alpha2)./(1+(2.*s.*(2.*sig2+1))))).*(1./(2.*s.*(2.*sig3+1))).*(exp((-

2.*s.*alpha3)./(1+(2.*s.*(2.*sig3+1)))))).^14; 

y=(C.*D).*(1-((1./s).*(A.*B))); 

Finally, 16P  can be obtained using: 

function[y]=w(s,ej) 

sig1=0.9*31.623*1/22; 

sig2=0.09*31.623*1/22; 

sig3=0.009*31.623*1/22; 

alpha1=0.9*31.623*20/22; 

alpha2=0.09*31.623*20/22; 

alpha3=0.009*31.623*20/22; 

A=(1./((2.*ej.*s)+1)).^16; 

B=(1./((4.*s)+1)).^0; 

C=((1./(2.*s.*(2.*sig1+ej))).*(exp((-

2.*s.*alpha1)./(1+(2.*s.*(2.*sig1+ej))))).*(1./(2.*s.*(2.*sig2+ej))).*(exp((-
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2.*s.*alpha2)./(1+(2.*s.*(2.*sig2+ej))))).*(1./(2.*s.*(2.*sig3+ej))).*(exp((-

2.*s.*alpha3)./(1+(2.*s.*(2.*sig3+ej)))))).^0; 

D=((1./(1+2.*s.*(2.*sig1+1))).*(exp((-

2.*s.*alpha1)./(1+(2.*s.*(2.*sig1+1))))).*(1./(2.*s.*(2.*sig2+1))).*(exp((-

2.*s.*alpha2)./(1+(2.*s.*(2.*sig2+1))))).*(1./(2.*s.*(2.*sig3+1))).*(exp((-

2.*s.*alpha3)./(1+(2.*s.*(2.*sig3+1)))))).^16; 

y=(C.*D).*(1-((1./s).*(A.*B))); 

Lastly, the probability of bit error can be calculated from 

( ) ( ) ( )12 14 1633 281 2179 .bP P P P= + +  
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